(a) Hugging face. (b) Doc2Vec.
Figure 6: HBDSCAN cluster visualizations for different feature extraction methods.
Alla, S. and Adari, S. K. (2021). What is mlops? In Begin-
ning MLOps with MLFlow, pages 79–124. Springer.
Amaro, R. M. D., Pereira, R., and da Silva, M. M. (2022).
Capabilities and practices in devops: A multivocal lit-
erature review. IEEE Transactions on Software Engi-
neering.
Arbesser, C., Spechtenhauser, F., M
¨
uhlbacher, T., and
Piringer, H. (2016). Visplause: Visual data qual-
ity assessment of many time series using plausibility
checks. IEEE transactions on visualization and com-
puter graphics, 23(1):641–650.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022.
Cali
´
nski, T. and Harabasz, J. (1974). A dendrite method for
cluster analysis. Communications in Statistics-theory
and Methods, 3(1):1–27.
Campello, R. J., Moulavi, D., and Sander, J. (2013).
Density-based clustering based on hierarchical den-
sity estimates. In Pacific-Asia conference on knowl-
edge discovery and data mining, pages 160–172.
Springer.
Davies, D. L. and Bouldin, D. W. (1979). A cluster separa-
tion measure. IEEE transactions on pattern analysis
and machine intelligence, (2):224–227.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In kdd, volume 96,
pages 226–231.
Hohman, F., Kahng, M., Pienta, R., and Chau, D. H. (2018).
Visual analytics in deep learning: An interrogative
survey for the next frontiers. IEEE transactions on vi-
sualization and computer graphics, 25(8):2674–2693.
Inkpen, K., Chancellor, S., De Choudhury, M., Veale, M.,
and Baumer, E. P. (2019). Where is the human? bridg-
ing the gap between ai and hci. In Extended abstracts
of the 2019 chi conference on human factors in com-
puting systems, pages 1–9.
Jayalath, H. and Ramaswamy, L. (2022). Enhancing per-
formance of operationalized machine learning models
by analyzing user feedback. In 2022 4th International
Conference on Image, Video and Signal Processing,
pages 197–203.
Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International confer-
ence on machine learning, pages 1188–1196. PMLR.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.
M
¨
akinen, S., Skogstr
¨
om, H., Laaksonen, E., and Mikkonen,
T. (2021). Who needs mlops: What data scientists
seek to accomplish and how can mlops help? In 2021
IEEE/ACM 1st Workshop on AI Engineering-Software
Engineering for AI (WAIN), pages 109–112. IEEE.
Nigenda, D., Karnin, Z., Zafar, M. B., Ramesha, R., Tan,
A., Donini, M., and Kenthapadi, K. (2021). Amazon
sagemaker model monitor: A system for real-time in-
sights into deployed machine learning models. arXiv
preprint arXiv:2111.13657.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Sacha, D., Sedlmair, M., Zhang, L., Lee, J. A., Pelto-
nen, J., Weiskopf, D., North, S. C., and Keim, D. A.
(2017). What you see is what you can change:
Human-centered machine learning by interactive vi-
sualization. Neurocomputing, 268:164–175.
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,
T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-
F., and Dennison, D. (2015). Hidden technical debt in
machine learning systems. Advances in neural infor-
mation processing systems, 28.
Wolf, T., Chaumond, J., Debut, L., Sanh, V., Delangue,
C., Moi, A., Cistac, P., Funtowicz, M., Davison, J.,
Shleifer, S., et al. (2020). Transformers: State-of-
the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
292