Chalapathy, R., Menon, A. K., and Chawla, S. (2018).
Anomaly detection using one-class neural networks.
arXiv preprint arXiv:1802.06360.
Charles, A. C., Ruback, L., and Oliveira, J. (2022). Fake-
pedia corpus: A flexible fake news corpus in por-
tuguese. In Pinheiro, V., Gamallo, P., Amaro, R., Scar-
ton, C., Batista, F., Silva, D., Magro, C., and Pinto, H.,
editors, Computational Processing of the Portuguese
Language, pages 37–45, Cham. Springer International
Publishing.
Cheng, Z., Zou, C., and Dong, J. (2019). Outlier detec-
tion using isolation forest and local outlier factor. In
Proceedings of the conference on research in adaptive
and convergent systems, pages 161–168.
Choi, J. and Lee, S.-W. (2020). Improving fasttext with
inverse document frequency of subwords. Pattern
Recognition Letters, 133:165–172.
de Carvalho, H. V. F., Carvalho, E. C., Arruda, H.,
Imperatriz-Fonseca, V., de Souza, P., and Pessin, G.
(2018). Detecc¸
˜
ao de anomalias em comportamento de
abelhas utilizando redes neurais recorrentes. In Anais
do IX Workshop de Computac¸
˜
ao Aplicada a Gest
˜
ao
do Meio Ambiente e Recursos Naturais, Porto Alegre,
RS, Brasil. SBC.
Endo, P. T., Santos, G. L., de Lima Xavier, M. E., Nasci-
mento Campos, G. R., de Lima, L. C., Silva, I., Egli,
A., and Lynn, T. (2022). Illusion of truth: Analysing
and classifying covid-19 fake news in brazilian por-
tuguese language. Big Data and Cognitive Comput-
ing, 6(2).
Faustini, P. and Cov
˜
oes, T. (2019). Fake news detection
using one-class classification. In 2019 8th Brazilian
Conference on Intelligent Systems (BRACIS), pages
592–597.
Garcia, G. L., Afonso, L., and Papa, J. P. (2022). Fakere-
cogna: A new brazilian corpus for fake news detec-
tion. In International Conference on Computational
Processing of the Portuguese Language, pages 57–67.
Springer.
G
´
eron, A. (2019). Maos a Obra: Aprendizado de Maquina
com Scikit-Learn & TensorFlow. O’Reilly Media.
He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-
based local outliers. Pattern recognition letters, 24(9-
10):1641–1650.
Kannan, R., Woo, H., Aggarwal, C. C., and Park, H. (2017).
Outlier detection for text data. In Proceedings of the
2017 siam international conference on data mining,
pages 489–497. SIAM.
Kesarwani, A., Chauhan, S. S., and Nair, A. R. (2020).
Fake news detection on social media using k-nearest
neighbor classifier. In 2020 International Conference
on Advances in Computing and Communication Engi-
neering (ICACCE), pages 1–4.
Kintopp, P. M. (2017). Aplicac¸
˜
ao de t
´
ecnicas de apren-
dizado de m
´
aquina em dados p
´
ublicos para detecc¸
˜
ao
de anomalias. B.S. thesis, Universidade Tecnol
´
ogica
Federal do Paran
´
a.
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J.,
Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan,
B., Pennycook, G., Rothschild, D., et al. (2018). The
science of fake news. Science, 359(6380):1094–1096.
Li, D., Guo, H., Wang, Z., and Zheng, Z. (2021). Unsuper-
vised fake news detection based on autoencoder. IEEE
Access, 9:29356–29365.
Li, K. (2021). Haha at fakedes 2021: A fake news detection
method based on tf-idf and ensemble machine learn-
ing. In IberLEF@ SEPLN, pages 630–638.
Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., and Chen,
G. (2022). Ecod: Unsupervised outlier detection us-
ing empirical cumulative distribution functions. IEEE
Transactions on Knowledge and Data Engineering.
Mishra, S., Shukla, P., and Agarwal, R. (2022). Analyzing
machine learning enabled fake news detection tech-
niques for diversified datasets. Wireless Communica-
tions and Mobile Computing, 2022.
Mohaghegh, M. and Abdurakhmanov, A. (2021). Anomaly
detection in text data sets using character-level repre-
sentation. In Journal of Physics: Conference Series,
volume 1880, page 012028. IOP Publishing.
Monteiro, R. A., Santos, R. L., Pardo, T. A., Almeida, T.
A. d., Ruiz, E. E., and Vale, O. A. (2018). Contri-
butions to the study of fake news in portuguese: New
corpus and automatic detection results. In Interna-
tional Conference on Computational Processing of the
Portuguese Language, pages 324–334. Springer.
Oshikawa, R., Qian, J., and Wang, W. Y. (2018). A survey
on natural language processing for fake news detec-
tion. arXiv preprint arXiv:1811.00770.
Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021).
Deep learning for anomaly detection: A review. ACM
Computing Surveys (CSUR), 54(2):1–38.
Passos, L. A., Ramos, C. C. O., Rodrigues, D., Pereira,
D. R., Souza, A. N., Costa, K. A. P., and Papa, J.
(2016). Unsupervised non-technical losses identifi-
cation through optimum-path forest. Electric Power
Systems Research, 140:413–423.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Ruchansky, N., Seo, S., and Liu, Y. (2017). Csi: A hybrid
deep model for fake news detection. In Proceedings
of the 2017 ACM on Conference on Information and
Knowledge Management, pages 797–806.
Ruff, L., Zemlyanskiy, Y., Vandermeulen, R., Schnake, T.,
and Kloft, M. (2019). Self-attentive, multi-context
one-class classification for unsupervised anomaly de-
tection on text. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4061–4071, Florence, Italy. Associa-
tion for Computational Linguistics.
Singhal, S., Shah, R. R., Chakraborty, T., Kumaraguru, P.,
and Satoh, S. (2019). Spotfake: A multi-modal frame-
work for fake news detection. In 2019 IEEE Fifth
International Conference on Multimedia Big Data
(BigMM), pages 39–47.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
836