REFERENCES
Carek, A. M., Conant, J., Joshi, A., Kang, H., and Inan,
O. T. (2017). Seismowatch: wearable cuffless blood
pressure monitoring using pulse transit time. Proceed-
ings of the ACM on interactive, mobile, wearable and
ubiquitous technologies, 1(3):1–16.
cheol Jeong, I., Bychkov, D., and Searson, P. C. (2018).
Wearable devices for precision medicine and health
state monitoring. IEEE Transactions on Biomedical
Engineering, 66(5):1242–1258.
Da He, D., Winokur, E. S., and Sodini, C. G. (2011). A con-
tinuous, wearable, and wireless heart monitor using
head ballistocardiogram (bcg) and head electrocardio-
gram (ecg). In 2011 Annual International Conference
of the IEEE engineering in medicine and biology so-
ciety, pages 4729–4732. IEEE.
Di Rienzo, M., Meriggi, P., Rizzo, F., Vaini, E., Faini,
A., Merati, G., Parati, G., and Castiglioni, P. (2011).
A wearable system for the seismocardiogram assess-
ment in daily life conditions. In 2011 Annual In-
ternational Conference of the IEEE Engineering in
Medicine and Biology Society, pages 4263–4266.
IEEE.
Etemadi, M., Inan, O. T., Heller, J. A., Hersek, S., Klein, L.,
and Roy, S. (2015). A wearable patch to enable long-
term monitoring of environmental, activity and hemo-
dynamics variables. IEEE transactions on biomedical
circuits and systems, 10(2):280–288.
Fattah, S. A., Rahman, M. M., Mustakin, N., Islam, M. T.,
Khan, A. I., and Shahnaz, C. (2017). Wrist-card: Ppg
sensor based wrist wearable unit for low cost person-
alized cardio healthcare system. In 2017 IEEE Global
Humanitarian Technology Conference (GHTC), pages
1–7. IEEE.
Ganti, V. G., Carek, A. M., Nevius, B. N., Heller, J. A.,
Etemadi, M., and Inan, O. T. (2020). Wearable cuff-
less blood pressure estimation at home via pulse tran-
sit time. IEEE Journal of Biomedical and Health In-
formatics, 25(6):1926–1937.
Gupta, J. and Shea, M. (2021). Cardiovascu-
lar examination. Merck Manual. https:
//www.merckmanuals.com/en-pr/professional/
cardiovascular-disorders/approach-to-the-cardiac-
patient/cardiovascular-examination(visited:2022-09).
Hernandez, J., Li, Y., Rehg, J. M., and Picard, R. W.
(2014). Bioglass: Physiological parameter estimation
using a head-mounted wearable device. In 2014 4th
International Conference on Wireless Mobile Com-
munication and Healthcare-Transforming Healthcare
Through Innovations in Mobile and Wireless Tech-
nologies (MOBIHEALTH), pages 55–58. IEEE.
Inan, O. T., Baran Pouyan, M., Javaid, A. Q., Dowling, S.,
Etemadi, M., Dorier, A., Heller, J. A., Bicen, A. O.,
Roy, S., De Marco, T., et al. (2018). Novel wearable
seismocardiography and machine learning algorithms
can assess clinical status of heart failure patients. Cir-
culation: Heart Failure, 11(1):e004313.
Inan, O. T., Migeotte, P.-F., Park, K.-S., Etemadi, M.,
Tavakolian, K., Casanella, R., Zanetti, J., Tank, J.,
Funtova, I., Prisk, G. K., et al. (2014). Ballistocardio-
graphy and seismocardiography: A review of recent
advances. IEEE journal of biomedical and health in-
formatics, 19(4):1414–1427.
Lee, J., Matsumura, K., Yamakoshi, K.-i., Rolfe, P., Tanaka,
S., and Yamakoshi, T. (2013). Comparison between
red, green and blue light reflection photoplethysmog-
raphy for heart rate monitoring during motion. In 2013
35th annual international conference of the IEEE en-
gineering in medicine and biology society (EMBC),
pages 1724–1727. IEEE.
Li, S.-H., Lin, B.-S., Wang, C.-A., Yang, C.-T., and
Lin, B.-S. (2017). Design of wearable and wire-
less multi-parameter monitoring system for evaluat-
ing cardiopulmonary function. Medical Engineering
& Physics, 47:144–150.
Maeda, Y., Sekine, M., and Tamura, T. (2011). Relation-
ship between measurement site and motion artifacts
in wearable reflected photoplethysmography. Journal
of medical systems, 35(5):969–976.
Pandia, K., Inan, O. T., Kovacs, G. T., and Giovangrandi, L.
(2012). Extracting respiratory information from seis-
mocardiogram signals acquired on the chest using a
miniature accelerometer. Physiological measurement,
33(10):1643.
Sana, F., Isselbacher, E. M., Singh, J. P., Heist, E. K.,
Pathik, B., and Armoundas, A. A. (2020). Wearable
devices for ambulatory cardiac monitoring: Jacc state-
of-the-art review. Journal of the American College of
Cardiology, 75(13):1582–1592.
Semiz, B., Carek, A. M., Johnson, J. C., Ahmad, S.,
Heller, J. A., Vicente, F. G., Caron, S., Hogue, C. W.,
Etemadi, M., and Inan, O. T. (2020). Non-invasive
wearable patch utilizing seismocardiography for peri-
operative use in surgical patients. IEEE Journal
of Biomedical and Health Informatics, 25(5):1572–
1582.
Shaffer, F. and Ginsberg, J. P. (2017). An overview of heart
rate variability metrics and norms. Frontiers in Public
Health, 5.
Shandhi, M. M. H., Semiz, B., Hersek, S., Goller, N.,
Ayazi, F., and Inan, O. T. (2019). Performance
analysis of gyroscope and accelerometer sensors for
seismocardiography-based wearable pre-ejection pe-
riod estimation. IEEE journal of biomedical and
health informatics, 23(6):2365–2374.
Tavakolian, K., Portacio, G., Tamddondoust, N. R., Jahns,
G., Ngai, B., Dumont, G. A., and Blaber, A. P. (2012).
Myocardial contractility: A seismocardiography ap-
proach. In 2012 Annual International Conference of
the IEEE Engineering in Medicine and Biology Soci-
ety, pages 3801–3804. IEEE.
WHO (2020). The top 10 causes of death. Geneva: World
Health Organization. https://www.who.int/news-
room/fact-sheets/detail/the-top-10-causes-of-death
(visited: 2022-09).
Zuckerman, R. B., Sheingold, S. H., Orav, E. J., Ruhter,
J., and Epstein, A. M. (2016). Readmissions, observa-
tion, and the hospital readmissions reduction program.
New England Journal of Medicine, 374(16):1543–
1551.
BIODEVICES 2023 - 16th International Conference on Biomedical Electronics and Devices
134