tion data. Computational Statistics & Data Analysis,
143:106839.
Chen, L. (2009). Curse of dimensionality. encyclopedia of
database systems.
Dietterich, T. G. et al. (2002). Ensemble learning.
The handbook of brain theory and neural networks,
2(1):110–125.
Giannakopoulos, T. and Pikrakis, A. (2014). Introduction
to audio analysis: a MATLAB® approach. Academic
Press.
Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J.,
Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S.,
Ford, E. S., Fox, C. S., et al. (2013). Heart disease
and stroke statistics—2013 update: a report from the
american heart association. Circulation, 127(1):e6–
e245.
Golubnitschaja, O., Kinkorova, J., and Costigliola, V.
(2014). Predictive, preventive and personalised
medicine as the hardcore of ‘horizon 2020’: Epma po-
sition paper. EPMA Journal, 5(1):1–29.
Hersek, S., Pouyan, M. B., Teague, C. N., Sawka, M. N.,
Millard-Stafford, M. L., Kogler, G. F., Wolkoff, P.,
and Inan, O. T. (2017). Acoustical emission analysis
by unsupervised graph mining: A novel biomarker of
knee health status. IEEE Transactions on Biomedical
Engineering, 65(6):1291–1300.
Hurnanen, T., Lehtonen, E., Tadi, M. J., Kuusela, T.,
Kiviniemi, T., Saraste, A., Vasankari, T., Airaksinen,
J., Koivisto, T., and P
¨
ank
¨
a
¨
al
¨
a, M. (2016). Auto-
mated detection of atrial fibrillation based on time–
frequency analysis of seismocardiograms. IEEE jour-
nal of biomedical and health informatics, 21(5):1233–
1241.
Imirzalioglu, M. and Semiz, B. (2022). Quantifying respira-
tion effects on cardiac vibrations using teager energy
operator and gradient boosted trees. In 2022 44th An-
nual International Conference of the IEEE Engineer-
ing in Medicine & Biology Society (EMBC), pages
1935–1938. IEEE.
Inan, O. T., Baran Pouyan, M., Javaid, A. Q., Dowling, S.,
Etemadi, M., Dorier, A., Heller, J. A., Bicen, A. O.,
Roy, S., De Marco, T., et al. (2018). Novel wearable
seismocardiography and machine learning algorithms
can assess clinical status of heart failure patients. Cir-
culation: Heart Failure, 11(1):e004313.
Inan, O. T., Migeotte, P.-F., Park, K.-S., Etemadi, M.,
Tavakolian, K., Casanella, R., Zanetti, J., Tank, J.,
Funtova, I., Prisk, G. K., et al. (2014). Ballistocardio-
graphy and seismocardiography: A review of recent
advances. IEEE journal of biomedical and health in-
formatics, 19(4):1414–1427.
Jahromi, M. G., Parsaei, H., Zamani, A., and Dehbozorgi,
M. (2017). Comparative analysis of wavelet-based
feature extraction for intramuscular emg signal de-
composition. Journal of biomedical physics & engi-
neering, 7(4):365.
Klabunde, R. (2011). Cardiovascular physiology concepts.
Lippincott Williams & Wilkins.
Koutroumbas, K. and Theodoridis, S. (2008). Pattern
recognition. Academic Press.
Lay, T. and Wallace, T. C. (1995). Modern global seismol-
ogy. Elsevier.
Levin, H. S., Runco, V., Goodwin, R. S., Ryan, J. M., et al.
(1962). The effect of respiration on cardiac murmurs:
An auscultatory illusion. The American Journal of
Medicine, 33(2):236–242.
McClellan, J. H., Schafer, R. W., and Yoder, M. A. (2003).
Signal processing first. Pearson education Upper Sad-
dle River, NJ.
Meister, S., Deiters, W., and Becker, S. (2016). Digital
health and digital biomarkers–enabling value chains
on health data. Current Directions in Biomedical En-
gineering, 2(1):577–581.
Pandia, K., Inan, O. T., Kovacs, G. T., and Giovangrandi, L.
(2012). Extracting respiratory information from seis-
mocardiogram signals acquired on the chest using a
miniature accelerometer. Physiological measurement,
33(10):1643.
Polikar, R. (1996). The wavelet tutorial second edition
part i. Fundamental Concepts & An Overview of The
Wavelet Theory.
Sedgwick, P. (2015). A comparison of parametric and non-
parametric statistical tests. BMJ, 350.
Semiz, B., Carek, A. M., Johnson, J. C., Ahmad, S.,
Heller, J. A., Vicente, F. G., Caron, S., Hogue, C. W.,
Etemadi, M., and Inan, O. T. (2020). Non-invasive
wearable patch utilizing seismocardiography for peri-
operative use in surgical patients. IEEE Journal
of Biomedical and Health Informatics, 25(5):1572–
1582.
Shah, A., Kattel, M., Nepal, A., and Shrestha, D. (2019).
Chroma feature extraction. Chroma Feature Extrac-
tion using Fourier Transform.
Shandhi, M. M. H., Semiz, B., Hersek, S., Goller, N.,
Ayazi, F., and Inan, O. T. (2019). Performance
analysis of gyroscope and accelerometer sensors for
seismocardiography-based wearable pre-ejection pe-
riod estimation. IEEE journal of biomedical and
health informatics, 23(6):2365–2374.
Svensson, L. (2008). Aortic valve stenosis and regurgita-
tion: an overview of management. Journal of Cardio-
vascular Surgery, 49(2):297.
Taebi, A., Solar, B. E., Bomar, A. J., Sandler, R. H., and
Mansy, H. A. (2019). Recent advances in seismocar-
diography. Vibration, 2(1):64–86.
WHO (2020). The top 10 causes of death. Geneva: World
Health Organization. https://www.who.int/news-
room/fact-sheets/detail/the-top-10-causes-of-death
(visited: 2022-09).
Yang, C., Aranoff, N. D., Green, P., and Tavassolian, N.
(2019). Classification of aortic stenosis using time–
frequency features from chest cardio-mechanical sig-
nals. IEEE Transactions on Biomedical Engineering,
67(6):1672–1683.
Yang, C., Fan, F., Aranoff, N., Green, P., Li, Y., Liu, C., and
Tavassolian, N. (2021). An open-access database for
the evaluation of cardio-mechanical signals from pa-
tients with valvular heart diseases. Frontiers in Phys-
iology, 12.
Spectral Analysis of Cardiogenic Vibrations to Distinguish Between Valvular Heart Diseases
219