REFERENCES
Bellatreche, L., Cheikh, S., Breß, S., Kerkad, A.,
Boukhorca, A., and Boukhobza, J. (2013). How to ex-
ploit the device diversity and database interaction to
propose a generic cost model? In Proceedings of the
17th International Database Engineering & Applica-
tions Symposium, pages 142–147. ACM.
Brahimi, L., Ouhammou, Y., Bellatreche, L., and Ouared,
A. (2016). More transparency in testing results: To-
wards an open collective knowledge base. In 2016
IEEE Tenth International Conference on Research
Challenges in Information Science (RCIS), pages 1–
6. IEEE.
Breß, S., K
¨
ocher, B., Funke, H., Zeuch, S., Rabl, T., and
Markl, V. (2018). Generating custom code for ef-
ficient query execution on heterogeneous processors.
The VLDB Journal, 27(6):797–822.
Chaudhuri, S. (1998). An overview of query optimiza-
tion in relational systems. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 34–43.
ACM.
Han, Y., Wu, Z., Wu, P., Zhu, R., Yang, J., Tan, L. W., Zeng,
K., Cong, G., Qin, Y., Pfadler, A., et al. (2021). Car-
dinality estimation in dbms: A comprehensive bench-
mark evaluation. arXiv preprint arXiv:2109.05877.
Hartmann, T., Moawad, A., Schockaert, C., Fouquet, F., and
Le Traon, Y. (2019). Meta-modelling meta-learning.
In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems
(MODELS), pages 300–305. IEEE.
Hilprecht, B. and Binnig, C. (2021). One model to rule them
all: towards zero-shot learning for databases. arXiv
preprint arXiv:2105.00642.
Hilprecht, B. and Binnig, C. (2022). Zero-shot cost mod-
els for out-of-the-box learned cost prediction. arXiv
preprint arXiv:2201.00561.
Hilprecht, B., Binnig, C., Bang, T., El-Hindi, M., H
¨
attasch,
B., Khanna, A., Rehrmann, R., R
¨
ohm, U., Schmidt,
A., Thostrup, L., et al. (2020). Dbms fitting: Why
should we learn what we already know? In CIDR.
Kerkad, A., Bellatreche, L., Richard, P., Ordonez, C., and
Geniet, D. (2014). A query beehive algorithm for data
warehouse buffer management and query scheduling.
International Journal of Data Warehousing and Min-
ing (IJDWM), 10(3):34–58.
Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., and
Kemper, A. (2018). Learned cardinalities: Estimat-
ing correlated joins with deep learning. arXiv preprint
arXiv:1809.00677.
Kraska, T., Alizadeh, M., Beutel, A., Chi, E. H., Ding, J.,
Kristo, A., Leclerc, G., Madden, S., Mao, H., and
Nathan, V. (2021). Sagedb: A learned database sys-
tem.
Manegold, S., Boncz, P., and Kersten, M. L. (2002).
Generic database cost models for hierarchical mem-
ory systems. In Proceedings of the 28th international
conference on Very Large Data Bases, pages 191–202.
VLDB Endowment.
Ouared, A., Chadli, A., and Daoud, M. A. (2022). Deepcm:
Deep neural networks to improve accuracy prediction
of database cost models. Concurrency and Computa-
tion: Practice and Experience, 34(10):e6724.
Ouared, A. and Kharroubi, F. Z. (2020). Moving database
cost models from darkness to light. In International
Conference on Smart Applications and Data Analysis,
pages 17–32. Springer.
Ouared, A., Ouhammou, Y., and Bellatreche, L. (2016a).
Costdl: a cost models description language for per-
formance metrics in database. In 2016 21st Interna-
tional Conference on Engineering of Complex Com-
puter Systems (ICECCS), pages 187–190. IEEE.
Ouared, A., Ouhammou, Y., and Bellatreche, L. (2017).
Metricstore repository: on the leveraging of perfor-
mance metrics in databases. In Proceedings of the
Symposium on Applied Computing, pages 1820–1825.
Ouared, A., Ouhammou, Y., and Bellatreche, L. (2018).
Qosmos: Qos metrics management tool suite. Com-
puter Languages, Systems & Structures, 54:236–251.
Ouared, A., Ouhammou, Y., and Roukh, A. (2016b). A
meta-advisor repository for database physical design.
In International Conference on Model and Data Engi-
neering, pages 72–87. Springer.
Pantilimonov, M., Buchatskiy, R., Zhuykov, R., Sharygin,
E., and Melnik, D. (2019). Machine code caching
in postgresql query jit-compiler. In 2019 Ivannikov
Memorial Workshop (IVMEM), pages 18–25. IEEE.
Perron, M., Shang, Z., Kraska, T., and Stonebraker, M.
(2019). How i learned to stop worrying and love re-
optimization. In 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pages 1758–
1761. IEEE.
Ryu, J. and Sung, H. (2021). Metatune: Meta-learning
based cost model for fast and efficient auto-tuning
frameworks. arXiv preprint arXiv:2102.04199.
Sun, J. and Li, G. (2019). An end-to-end learning-based
cost estimator. arXiv preprint arXiv:1906.02560.
Wrede, F. and Kuchen, H. (2020). Towards high-
performance code generation for multi-gpu clusters
based on a domain-specific language for algorithmic
skeletons. International Journal of Parallel Program-
ming, 48(4):713–728.
Wu, W., Chi, Y., Hac
´
ıg
¨
um
¨
us¸, H., and Naughton, J. F.
(2013). Towards predicting query execution time for
concurrent and dynamic database workloads. Pro-
ceedings of the VLDB Endowment, 6(10):925–936.
Zeileis, A., Hornik, K., Smola, A., and Karatzoglou, A.
(2004). kernlab-an s4 package for kernel methods in
r. Journal of statistical software, 11(9):1–20.
Zhang, N. and Others (2011). Towards cost-effective stor-
age provisioning for dbmss. Proceedings of the VLDB
Endowment, 5(4):274–285.
MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering
54