even better results. In future projects, we would like
to improve this approach by addressing several issues.
First, expand the training dataset of our system with
a wider variety of polyp sizes. Second, to bring more
precision to our algorithm in blood vessel selection.
And finally, to combine our classification with the one
done of polyp types in order to better detect their de-
gree of malignancy and to better help physicians in
CRC screening.
ACKNOWLEDGEMENT
Authors would like to thank Dr. Y. Za
¨
ır from Bir
Mourad Ra
¨
ıs Clinic, Algiers and Dr. C. Sekkai,
from Bou
¨
ınan Clinic, Blida, both specializing in
Hepato-Gastro-Enterology, for their valuable help
especially in annotating the data. Iwahori’s re-
search is supported by Japan Society for the Promo-
tion of Science (JSPS) Grant-in-Aid Scientific Re-
search(C)(#20K11873) and Chubu University Grant.
REFERENCES
Bernal, J.,
´
Sanchez, F., Fern
´
andez-Esparrach, G., Gil, D.,
Rodr
´
ıguez de Miguel, C., and Vilari
˜
no, F. (2015).
Wm-dova maps for accurate polyp highlighting in
colonoscopy: Validation vs. saliency maps from
physicians. Computerized Medical Imaging and
Graphics, 43.
Dong, B., Wang, W., Fan, D.-P., Li, J., Fu, H., and Shao, L.
(2021). Polyp-pvt: Polyp segmentation with pyramid
vision transformers.
Hyun, Y. S., Han, D. S., Bae, J. H., Park, H. S., and Eun,
C. S. (2011). Graduated injection needles and snares
for polypectomy are useful for measuring colorectal
polyp size. Digestive and Liver Disease, 43(5):391–
394.
Itoh, H., Misawa, M., Mori, Y., Kudo, S., Oda, M., and
Mori, K. (2020). Website: Sun colonoscopy video
database (http://amed8k.sundatabase.org/).
Itoh, H., Oda, M., Jiang, K., Mori, Y., Misawa, M.,
Kudo, s.-e., Imai, K., Ito, S., Hotta, K., and Mori,
K. (2021). Binary polyp-size classification based on
deep-learned spatial information. International Jour-
nal of Computer Assisted Radiology and Surgery, 16.
Itoh, H., Roth, H. R., Lu, L., Oda, M., Misawa, M., Mori,
Y., Kudo, S.-e., and Mori, K. (2018). Towards auto-
mated colonoscopy diagnosis: Binary polyp size esti-
mation via unsupervised depth learning. In Frangi,
A. F., Schnabel, J. A., Davatzikos, C., Alberola-
L
´
opez, C., and Fichtinger, G., editors, Medical Im-
age Computing and Computer Assisted Intervention –
MICCAI 2018, pages 611–619, Cham. Springer Inter-
national Publishing.
Iwahori, Y., Emoto, S., Funahashi, K., Bhuyan, M., Wang,
A., and Kasugai, K. (2022). Recovering shape and
size from a single endoscope image using optimiza-
tion. IIAI-AAI 2022, pages 331–334.
Misawa, M., Kudo, s.-e., Mori, Y., Hotta, K., Ohtsuka, K.,
Matsuda, T., Saito, S., Kudo, T., Baba, T., Ishida, F.,
Itoh, H., Oda, M., and Mori, K. (2020). Development
of a computer-aided detection system for colonoscopy
and a publicly accessible large colonoscopy video
database (with video). Gastrointestinal Endoscopy,
93.
Nguyen, Q. and Lee, S.-W. (2018). Colorectal seg-
mentation using multiple encoder-decoder network in
colonoscopy images. pages 208–211.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Pogorelov, K., Randel, K. R., Griwodz, C., Eskeland, S. L.,
de Lange, T., Johansen, D., Spampinato, C., Dang-
Nguyen, D.-T., Lux, M., Schmidt, P. T., Riegler, M.,
and Halvorsen, P. (2017). Kvasir: A multi-class im-
age dataset for computer aided gastrointestinal disease
detection. In Proceedings of the 8th ACM on Multime-
dia Systems Conference, MMSys’17, pages 164–169,
New York, NY, USA. ACM.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. volume 9351, pages 234–241.
Suykens, J., Eelbode, T., Daenen, J., Suetens, P., Maes,
F., and Bisschops, R. (2020). Sa2012 automated
polyp size estimation with deep learning reduces in-
terobserver variability. Gastrointestinal Endoscopy,
91:AB241–AB242.
Suzuki, S. and be, K. (1985). Topological structural anal-
ysis of digitized binary images by border following.
Computer Vision, Graphics, and Image Processing,
30(1):32–46.
Woodham, R. (1992). Photometric method for determin-
ing surface orientation from multiple images. Optical
Engineering, 19.
PVT based Blood Vessel Segmentation and Polyp Size Estimation in Colonoscopy Images
821