population-based cancer registration. BMC medical
research methodology, 11(1), 129.
Freeman, E. A., Moisen, G. G., Coulston, J. W., & Wilson,
B. T. (2016). Random forests and stochastic gradient
boosting for predicting tree canopy cover: comparing
tuning processes and model performance. Canadian
Journal of Forest Research, 46(3), 323-339.
Friedman, J. H. (2002). Stochastic gradient boosting.
Computational statistics & data analysis, 38(4), 367-
378.
Hancock, T., Put, R., Coomans, D., Vander Heyden, Y., &
Everingham, Y. (2005). A performance comparison of
modern statistical techniques for molecular descriptor
selection and retention prediction in chromatographic
QSRR studies. Chemometrics and Intelligent
Laboratory Systems, 76(2), 185-196.
Hastie, T., Tibshirani, R., & Friedman, J. H. (2017). The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction: Springer.
Landis, J. R., & Koch, G. G. (1977). The measurement of
observer agreement for categorical data. Biometrics,
159-174.
Le Sueur, H., Bruce, I. N., & Geifman, N. (2020). The
challenges in data integration–heterogeneity and
complexity in clinical trials and patient registries of
Systemic Lupus Erythematosus. BMC Medical
Research Methodology, 20(1), 1-5.
Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014).
The evolution of boosting algorithms. Methods of
information in medicine, 53(06), 419-427.
Meyer, G (1911). Bericht über die zehnjährige Wirksamkeit
des Deutschen Zentralkomitees für Krebsforschung.
Zeitschrift für Krebsforschung 1911; 10: 8–33.
Minicozzi, P., Innos, K., Sánchez, M. J., Trama, A., Walsh,
P. M., Marcos-Gragera, R., ... & White, C. (2017).
Quality analysis of population-based information on
cancer stage at diagnosis across Europe, with
presentation of stage-specific cancer survival estimates:
A EUROCARE-5 study. European Journal of Cancer,
84, 335-353.
Ostenfeld, E. B., Frøslev, T., Friis, S., Gandrup, P., Madsen,
M. R., & Søgaard, M. (2012). Completeness of colon
and rectal cancer staging in the Danish Cancer Registry,
2004–2009. Clinical epidemiology, 4 Suppl 2(Suppl 2),
33-38. doi:10.2147/clep.s32362
Ostermann, T., Appelbaum, S., Baumgartner, S., Rist, L.,
& Krüerke, D. (2022). Using Merged Cancer Registry
Data for Survival Analysis in Patients Treated with
Integrative Oncology: Conceptual Framework and First
Results of a Feasibility Study. In HEALTHINF (pp.
463-468).
Ramos, M., Franch, P., Zaforteza, M., Artero, J., & Durán,
M. (2015). Completeness of T, N, M and stage grouping
for all cancers in the Mallorca Cancer Registry. BMC
Cancer, 15(1), 847. doi:10.1186/s12885-015-1849-x
Schad, F., Matthes,B., Pissarek, J. et al. (2016).
QuaDoSta: Qualitätssicherung, Dokumentation
und Statistik, eine open source Lösung am
Beispiel onkologischer Dokumentation; http://www.
fih-berlin.de/tumorbasisdokumentation.html [Stand:
07Also, the AUCs have values between 0.731 and
0.803, which also does not meet the standards for a
valid procedure, for which an AUC > 0.8 is defined as
good and an AUC > 0.9 as very good (cf. Šimundić,
2009).04.2016]
Seneviratne, S., Campbell, I., Scott, N., Shirley, R., Peni,
T., & Lawrenson, R. (2014). Accuracy and
completeness of the New Zealand Cancer Registry for
staging of invasive breast cancer. Cancer epidemiology,
38(5), 638-644.
Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., &
Hemingway, H. (2014). Comparison of random forest
and parametric imputation models for imputing missing
data using MICE: a CALIBER study. American journal
of epidemiology, 179(6), 764-774.
Šimundić, A. M. (2009). Measures of diagnostic accuracy:
basic definitions. Ejifcc, 19(4), 203.
Søgaard, M., & Olsen, M. (2012). Quality of cancer registry
data: completeness of TNM staging and potential
implications. Clinical epidemiology, 4 Suppl 2, 1-3.
doi:10.2147/clep.s33873
Takes, R. P., Rinaldo, A., Silver, C. E., Piccirillo, J. F.,
Haigentz Jr, M., Suárez, C., . . . Ferlito, A. (2010).
Future of the TNM classification and staging system in
head and neck cancer. Head & Neck, 32(12), 1693-
1711. doi:10.1002/hed.21361
Wagner, G. (1991): History of cancer registration. In:
Jensen OM, Parkin DM, MacLennan R et al, (eds).
Cancer registration: principles and methods. IARC
scientific publication 95. Lyon: International Agency
for Research on Cancer: 3-6.