other tasks or fields (e.g., medical image analysis or
the field of audio in the form of mel spectrograms).
From a practical standpoint, solving the limitation of
expensive training would enable more efficient usage
of the available datasets. Currently, expensive train-
ing is a limitation of VP, which is also a possible fu-
ture task.
REFERENCES
Abayomi-Alli, O. O., Dama
ˇ
sevi
ˇ
cius, R., Maskeli
¯
unas, R.,
and Misra, S. (2021). Few-shot learning with a
novel voronoi tessellation-based image augmentation
method for facial palsy detection. Electronics, 10(8).
Aggarwal, C. C. (2018). Neural Networks and Deep Learn-
ing: A Textbook. Springer Publishing Company, In-
corporated, 1st edition.
Aurenhammer, F. (1991). Voronoi diagrams—a survey of a
fundamental geometric data structure. ACM Comput.
Surv., 23(3):345–405.
Aurenhammer, F., Klein, R., and Lee, D.-T. (2013). Voronoi
Diagrams and Delaunay Triangulations. World Sci-
entific Publishing Co., Inc., USA, 1st edition.
Beyer, L., H
´
enaff, O. J., Kolesnikov, A., Zhai, X., and Oord,
A. v. d. (2020). Are we done with imagenet? arXiv
preprint arXiv:2006.07159.
Burnham, K. P. and Anderson, D. R. (2002). Model
selection and multimodel inference : a practical
information-theoretic approach. Springer-Verlag,
New York, NY, 2nd edition.
Chen, P., Liu, S., Zhao, H., and Jia, J. (2020). Gridmask
data augmentation. CoRR, abs/2001.04086.
Devries, T. and Taylor, G. W. (2017). Improved regular-
ization of convolutional neural networks with cutout.
CoRR, abs/1708.04552.
Dwibedi, D., Misra, I., and Hebert, M. (2017). Cut, paste
and learn: Surprisingly easy synthesis for instance de-
tection. CoRR, abs/1708.01642.
Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and
Tsipras, D. (2019). Robustness (Python Library).
Goodfellow, I. J., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press.
Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. (2016). Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360.
Illium, S., M
¨
uller, R., Sedlmeier, A., and Linnhoff-Popien,
C. (2020). Surgical mask detection with convolutional
neural networks and data augmentations on spectro-
grams. Proc. Interspeech 2020, pages 2052–2056.
Illium, S., M
¨
uller, R., Sedlmeier, A., and Popien, C.-L.
(2021). Visual transformers for primates classifica-
tion and covid detection. In 22nd Annual Conference
of the International Speech Communication Associa-
tion, INTERSPEECH 2021, pages 4341–4345.
Inoue, H. (2018). Data augmentation by pairing samples for
images classification. CoRR, abs/1801.02929.
Jiang, W., Zhang, K., Wang, N., and Yu, M. (2020). Mesh-
cut data augmentation for deep learning in computer
vision. PLoS One, 15(12):e0243613.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
schocastic optimization. ArXiv, abs/1412.6980.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90.
Lee, J., Zaheer, M., Astrid, M., and Lee, S.-I. (2020).
Smoothmix: a simple yet effective data augmentation
to train robust classifiers. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 3264–3274.
Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000).
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Series in Probability and Statis-
tics. John Wiley and Sons, Inc., 2nd edition.
Ruder, S. (2016). An overview of gradient descent opti-
mization algorithms. ArXiv, abs/1609.04747.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal
of Big Data, 6(1):1–48.
Singh, K. K., Yu, H., Sarmasi, A., Pradeep, G., and Lee,
Y. J. (2018). Hide-and-seek: A data augmentation
technique for weakly-supervised localization and be-
yond. CoRR, abs/1811.02545.
Summers, C. and Dinneen, M. J. (2018). Improved mixed-
example data augmentation. CoRR, abs/1805.11272.
Takahashi, R., Matsubara, T., and Uehara, K. (2018). Ri-
cap: Random image cropping and patching data aug-
mentation for deep cnns. In Zhu, J. and Takeuchi, I.,
editors, Proceedings of The 10th Asian Conference on
Machine Learning, volume 95 of Proceedings of Ma-
chine Learning Research, pages 786–798. PMLR.
Tokozume, Y., Ushiku, Y., and Harada, T. (2017). Between-
class learning for image classification. CoRR,
abs/1711.10284.
Wang, Q., Ma, Y., Zhao, K., and Tian, Y. (2022). A compre-
hensive survey of loss functions in machine learning.
Annals of Data Science, 9.
Wang, Z., Bovik, A., and Sheikh, H. (2005). Structural sim-
ilarity based image quality assessment. Digital Video
Image Quality and Perceptual Coding, Marcel Dekker
Series in Signal Processing and Communications.
Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. (2019). Cutmix: Regularization strategy to train
strong classifiers with localizable features. CoRR,
abs/1905.04899.
Zhang, H., Ciss
´
e, M., Dauphin, Y. N., and Lopez-Paz, D.
(2017). mixup: Beyond empirical risk minimization.
CoRR, abs/1710.09412.
Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y.
(2017). Random erasing data augmentation. CoRR,
abs/1708.04896.
VoronoiPatches: Evaluating a New Data Augmentation Method
357