positions that they would normally not, allowing for
greater search capabilities and enhanced performance.
While the results observed in this study are
extremely positive, further experimentation with the
GBFA is required. The next stage of research for this
algorithm is to tune the group size parameter and the
number of groups within a swarm, to evaluate the
performance when using larger or smaller group
sizes. Additionally, concepts such as the cross-group
communication behaviour seen in other research
within the area, such as (Cao et al., 2022), that allows
individual fireflies to exist across multiple groups can
be incorporated into the GBFA to investigate the
impact that this has on the performance of the
algorithm.
REFERENCES
Altherwi, A. (2020). Application of the Firefly algorithm
for optimal production and demand forecasting at
selected Industrial Plant. Open Journal of Business and
Management, 08(06), 2451-2459. doi:10.4236/
ojbm.2020.86151
Ariyaratne, M., Fernando, T., & Weerakoon, S.
(2019). Solving systems of nonlinear equations using a
modified Firefly Algorithm (MODFA). Swarm and
Evolutionary Computation, 48, 72-92. doi:10.1016/
j.swevo.2019.03.010
Bacanin, N., Zivkovic, M., Bezdan, T., Venkatachalam, K.,
and Abouhawwash, M. (2022). Modified firefly
algorithm for workflow scheduling in cloud-edge
environment. Neural Computing and Applications,
34(11), 9043-9068. doi:10.1007/s00521-022-06925-y
Cao, L., Ben, K., Peng, H., and Zhang, X. (2022).
Enhancing Firefly algorithm with adaptive multi-group
mechanism. Applied Intelligence, 52(9), 9795-9815.
doi:10.1007/s10489-021-02766-9
Chandrawati, T. B., and Sari, R. F. (2018). A review of
Firefly algorithms for path planning, vehicle routing
and traveling salesman problems. 2018 2nd
International Conference on Electrical Engineering
and Informatics (ICon EEI). doi:10.1109/icon-
eei.2018.8784312
Chou, J., and Ngo, N. (2017). Modified Firefly algorithm
for multidimensional optimization in Structural
Design Problems. Structural and Multidisciplinary
Optimization, 55(6), 2013-2028. doi:10.1007/s00158-
016-1624-x
Fister, I., Yang, X., Brest, J., and Fister, I. (2013). Modified
Firefly algorithm using quaternion representation.
Expert Systems with Applications, 40(18), 7220-7230.
doi:10.1016/j.eswa.2013.06.070
Gamao, A. O., Gerardo, B. D., and Medina, R. P. (2019).
Modified mutated Firefly algorithm. 2019 IEEE 6th
International Conference on Engineering Technologies
and Applied Sciences (ICETAS). doi:10.1109/
icetas48360.2019.9117417
Jain, A., Sharma, S., and Sharma, S. (2021). Firefly
algorithm. NatureโInspired Algorithms Applications,
157-180. doi:10.1002/9781119681984.ch6
Napalit, A. P., and Ballera, M. A. (2021). Application of
firefly algorithm in scheduling. 2021 IEEE
International Conference on Computing (ICOCO).
doi:10.1109/icoco53166.2021.9673581
Nayak, J., Naik, B., Dinesh, P., Vakula, K., and Dash, P. B.
(2020). Firefly algorithm in biomedical and health care:
Advances, issues and challenges. SN Computer
Science, 1(6). doi:10.1007/s42979-020-00320-x
Parwanti, A., Wahyudi, S. I., Ni'Am, M. F., Ali, M.,
Iswinarti, and Haikal, M. A. (2021). Modified Firefly
algorithm for optimization of the water level in the tank.
2021 3rd International Conference on Research and
Academic Community Services (ICRACOS). doi:10.
1109/icracos53680.2021.9701981
Qi, X., Zhu, S., and Zhang, H. (2017). A hybrid Firefly
algorithm. 2017 IEEE 2nd Advanced Information
Technology, Electronic and Automation Control
Conference (IAEAC). doi:10.1109/iaeac.2017.8054023
Siemiatkowska, B., and Stecz, W. (2021). A framework for
planning and execution of drone swarm missions in a
hostile environment. Sensors, 21(12), 4150.
doi:10.3390/s21124150
Suganya, T. S., and Murugavalli, S. (2019). A hybrid group
search optimization: Firefly Algorithm-based Big Data
Framework for ancient script recognition. Soft
Computing, 24(14), 10933-10941. doi:10.1007/
s00500-019-04596-x
Tong, N., Fu, Q., Zhong, C., and Wang, P. (2017). A multi-
group Firefly algorithm for numerical optimization.
Journal of Physics: Conference Series, 887(1), 012060.
doi:10.1088/1742-6596/887/1/012060
Wahid, F., Ghazali, R., and Shah, H. (2018). An improved
hybrid firefly algorithm for solving optimization
problems. Advances in Intelligent Systems and
Computing, 14-23. doi:10.1007/978-3-319-72550-5_2
Wang, C., and Liu, K. (2019). A randomly guided Firefly
algorithm based on elitist strategy and its applications.
IEEE Access, 7, 130373-130387. doi:10.1109/access.
2019.2940582
Wang, H., Wang, W., Zhou, X., Sun, H., Zhao, J., Yu, X.,
and Cui, Z. (2017). Firefly algorithm with
neighborhood attraction. Information Sciences, 382-
383, 374-387. doi:10.1016/j.ins.2016.12.024
Wang, W., Xu, L., Chau, K., and Xu, D. (2020). Yin-Yang
Firefly algorithm based on dimensionally cauchy
mutation. Expert Systems with Applications, 150,
113216. doi:10.1016/j.eswa.2020.113216
Yang, X. S., and He, X. (2013). Firefly Algorithm: Recent
advances and applications. International Journal of
Swarm Intelligence, 1(1), 36. doi:10.1504/ijsi.
2013.055801
Zivkovic, M., Tair, M., K, V., Bacanin, N., Hubรกlovskรฝ, ล ,
and Trojovskรฝ, P. (2022). Novel hybrid firefly
algorithm: An application to enhance XGBoost tuning
for intrusion detection classification. PeerJ Computer
Science, 8. doi:10.7717/peerj-cs.956.