In Bengio, Y. and LeCun, Y., editors, 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.
Chen, L., Zhu, Y., Papandreou, G., Schroff, F., and Adam,
H. (2018). Encoder-decoder with atrous separable
convolution for semantic image segmentation. In Fer-
rari, V., Hebert, M., Sminchisescu, C., and Weiss, Y.,
editors, Computer Vision - ECCV 2018 - 15th Euro-
pean Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VII, volume 11211 of Lecture
Notes in Computer Science, pages 833–851. Springer.
Chollet, F. (2017). Xception: Deep learning with depth-
wise separable convolutions. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 1800–1807. IEEE Computer Society.
Dias, L. O., Bom, C. R., Faria, E. L., Valent
´
ın, M. B., Cor-
reia, M. D., de Albuquerque, M. P., de Albuquerque,
M. P., and Coelho, J. M. (2020). Automatic detection
of fractures and breakouts patterns in acoustic bore-
hole image logs using fast-region convolutional neu-
ral networks. Journal of Petroleum Science and Engi-
neering, 191:107099.
Everingham, M., Van Gool, L., Williams, C.
K. I., Winn, J., and Zisserman, A. The
PASCAL Visual Object Classes Challenge
2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.
Girshick, R. (2015). Fast r-cnn. In International Conference
on Computer Vision (ICCV).
Glossop, K., Lisboa, P. J. G., Russell, P. C., Siddans, A., and
Jones, G. R. (1999). An implementation of the hough
transformation for the identification and labelling of
fixed period sinusoidal curves. Comput. Vis. Image
Underst., 74:96–100.
Hall, J., Ponzi, M., Gonfalini, M., and Maletti, G. (1996).
Automatic Extraction And Characterisation Of Geo-
logical Features And Textures Front Borehole Images
And Core Photographs. volume All Days of SPWLA
Annual Logging Symposium. SPWLA-1996-CCC.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2980–2988.
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
Le, Q. V., and Adam, H. (2019). Searching for mo-
bilenetv3. In ICCV.
Li, J., Jiang, F., Yang, J., Kong, B., Gogate, M., Dashtipour,
K., and Hussain, A. (2021). Lane-deeplab: Lane se-
mantic segmentation in automatic driving scenarios
for high-definition maps. Neurocomputing, 465:15–
25.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Doll
´
ar, P., and Zitnick, C. L. (2014). Mi-
crosoft coco: Common objects in context. In Fleet,
D., Pajdla, T., Schiele, B., and Tuytelaars, T., edi-
tors, Computer Vision – ECCV 2014, pages 740–755,
Cham. Springer International Publishing.
Moran, M. B. H., Cuno, J. S., Riveaux, J. A., Vasconcellos,
E. C., Biondi, M., Clua, E. W., Correia, M. D., and
Conci, A. (2020). Automatic sinusoidal curves detec-
tion in borehole images using the iterated local search
algorithm. In 2020 International Conference on Sys-
tems, Signals and Image Processing (IWSSIP), pages
255–260.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. In CVPR.
Tabernik, D.,
ˇ
Sela, S., Skvar
ˇ
c, J., and Sko
ˇ
caj, D. (2019).
Segmentation-Based Deep-Learning Approach for
Surface-Defect Detection. Journal of Intelligent Man-
ufacturing.
Thapa, B., Hughett, P., and Karasaki, K. (1997). Semi-
automatic analysis of rock fracture orientations from
borehole wall images. Geophysics, 62(1):129–137.
cited By 32.
van Ginkel, M., Kraaijveld, M. A., van Vliet, L. J., Reding,
E. P., Verbeek, P. W., and Lammers, H. J. (2003). Ro-
bust curve detection using a radon transform in orien-
tation space. In Big
¨
un, J. and Gustavsson, T., editors,
Image Analysis, 13th Scandinavian Conference, SCIA
2003, Halmstad, Sweden, June 29 - July 2, 2003, Pro-
ceedings, volume 2749 of Lecture Notes in Computer
Science, pages 125–132. Springer.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nel-
son, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat,
˙
I., Feng, Y., Moore, E. W., VanderPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,
I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and
SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272.
Wedge, D., Holden, E.-J., Dentith, M., and Spadaccini,
N. (2015). Automated structure detection and anal-
ysis in televiewer images. ASEG Extended Abstracts,
2015(1):1–4.
Zhang, X. and Xiao, X. (2009). Detection of fractures in
borehole image. In Zhang, T., Hirsch, B., Cao, Z.,
and Lu, H., editors, MIPPR 2009: Automatic Target
Recognition and Image Analysis, volume 7495, pages
1043 – 1048. International Society for Optics and Pho-
tonics, SPIE.
Automatic Fracture Detection and Characterization in Borehole Images Using Deep Learning-Based Semantic Segmentation
863