Information Processing Systems, volume 31. Curran
Associates, Inc.
Li, J., Yang, Z., Liu, H., and Cai, D. (2018). Deep Rotation
Equivariant Network. Neurocomputing, 290:26–33.
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and
Jain, A. K. (2002a). Fvc2000: Fingerprint verification
competition. IEEE transactions on pattern analysis
and machine intelligence, 24(3):402–412.
Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and
Jain, A. K. (2002b). Fvc2002: Second fingerprint ver-
ification competition. In 2002 International Confer-
ence on Pattern Recognition, volume 3, pages 811–
814. IEEE.
Maltoni, D., Maio, D., Jain, A. K., and Feng, J. (2022).
Fingerprint Synthesis. In Maltoni, D., Maio, D., Jain,
A. K., and Feng, J., editors, Handbook of Fingerprint
Recognition, pages 385–426. Springer International
Publishing, Cham.
Naderi, H., Goli, L., and Kasaei, S. (2020). Scale Equiv-
ariant CNNs with Scale Steerable Filters. In 2020 In-
ternational Conference on Machine Vision and Image
Processing (MVIP), pages 1–5. ISSN: 2166-6784.
Nguyen, D.-L., Cao, K., and Jain, A. K. (2017). Robust
Minutiae Extractor: Integrating Deep Networks and
Fingerprint Domain Knowledge. arXiv:1712.09401
[cs]. arXiv: 1712.09401.
Nguyen, V. H., Liu, J., Nguyen, T. H. B., and
Kim, H. (2020). Universal fingerprint minu-
tiae extractor using convolutional neural net-
works. IET Biometrics, 9(2):47–57. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
bmt.2019.0017.
Peralta, D., Galar, M., Triguero, I., Miguel-Hurtado, O.,
Benitez, J. M., and Herrera, F. (2014). Minutiae filter-
ing to improve both efficacy and efficiency of finger-
print matching algorithms. Engineering Applications
of Artificial Intelligence, 32:37–53.
Peralta, D., Galar, M., Triguero, I., Paternain, D., Garc
´
ıa,
S., Barrenechea, E., Ben
´
ıtez, J. M., Bustince, H., and
Herrera, F. (2015). A survey on fingerprint minutiae-
based local matching for verification and identifica-
tion: Taxonomy and experimental evaluation. Infor-
mation Sciences, 315:67–87.
Pinetz, T., Huber-M
¨
ork, R., Soukop, D., and Sablatnig, R.
(2017). Using a U-Shaped Neural Network for minu-
tiae extraction trained from refined, synthetic finger-
prints. In 2017 Proceedings of the OAGM & ARW
Joint Workshop Vision, Automation and Robotics.
Rebelo, A., Oliveira, T., Correia, M. E., and Cardoso,
J. S. (2019). Are Deep Learning Methods Ready for
Prime Time in Fingerprints Minutiae Extraction? In
Vera-Rodriguez, R., Fierrez, J., and Morales, A., edi-
tors, Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, Lecture Notes in
Computer Science, pages 628–636, Cham. Springer
International Publishing.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. In Navab, N., Hornegger, J., Wells, W. M.,
and Frangi, A. F., editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015,
Lecture Notes in Computer Science, pages 234–241,
Cham. Springer International Publishing.
Ruder, S. (2017). An Overview of Multi-Task Learning
in Deep Neural Networks. http://arxiv.org/abs/1706.
05098. arXiv:1706.05098 [cs, stat].
Takahashi, A., Koda, Y., Ito, K., and Aoki, T. (2020). Fin-
gerprint Feature Extraction by Combining Texture,
Minutiae, and Frequency Spectrum Using Multi-Task
CNN. In 2020 IEEE International Joint Conference
on Biometrics (IJCB), pages 1–8. ISSN: 2474-9699.
Tang, Y., Gao, F., Feng, J., and Liu, Y. (2017). FingerNet:
An unified deep network for fingerprint minutiae ex-
traction. In 2017 IEEE International Joint Conference
on Biometrics (IJCB), pages 108–116. ISSN: 2474-
9699.
Worrall, D. E., Garbin, S. J., Turmukhambetov, D.,
and Brostow, G. J. (2017). Harmonic Net-
works: Deep Translation and Rotation Equivariance.
arXiv:1612.04642 [cs, stat]. arXiv: 1612.04642.
Zhang, Z., Liu, S., and Liu, M. (2021). A multi-task
fully deep convolutional neural network for contact-
less fingerprint minutiae extraction. Pattern Recogni-
tion, 120:108189.
Zhou, B., Han, C., Liu, Y., Guo, T., and Qin, J. (2020).
Fast minutiae extractor using neural network. Pattern
Recognition, 103:107273.
Deep Minutiae Fingerprint Extraction Using Equivariance Priors
251