Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1746–1751.
Klein, D. and Wueller, J. (2017). Fake news: A legal per-
spective. Journal of Internet Law (Apr. 2017).
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J.,
Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan,
B., Pennycook, G., Rothschild, D., et al. (2018). The
science of fake news. Science, 359(6380):1094–1096.
LeCun, Y. (2016). L’apprentissage profond, une r
´
evolution
en intelligence artificielle. La lettre du Coll
`
ege de
France, (41):13.
Mahrishi, M., Hiran, K. K., Meena, G., and Sharma, P.
(2020). Machine Learning and Deep Learning in
Real-Time Applications. IGI global.
Mustafaraj, E. and Metaxas, P. T. (2017). The fake news
spreading plague: was it preventable? In Proceedings
of the 2017 ACM on web science conference, pages
235–239.
Nicole, O., Sophia, L., Georgios, E., and Xavier, B. (2018).
The language of fake news: Opening the black-box of
deep learning based detectors. In 32nd Conference on
Neural Information Processing Systems.
Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J.,
and Stein, B. (2017). A stylometric inquiry
into hyperpartisan and fake news. arXiv preprint
arXiv:1702.05638.
Quandt, T., Frischlich, L., Boberg, S., and Schatto-Eckrodt,
T. (2019). Fake news. The international encyclopedia
of journalism studies, pages 1–6.
Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. (2017).
Fake news detection on social media: A data mining
perspective. ACM SIGKDD explorations newsletter,
19(1):22–36.
Verma, P. K., Agrawal, P., Amorim, I., and Prodan, R.
(2021). Welfake: word embedding over linguistic fea-
tures for fake news detection. IEEE Transactions on
Computational Social Systems, 8(4):881–893.
Verma, P. K., Agrawal, P., Madaan, V., and Prodan, R.
(2022). Mcred: multi-modal message credibility for
fake news detection using bert and cnn. Journal
of Ambient Intelligence and Humanized Computing,
pages 1–13.
Vivek, S., Rupanjal, D., Darshan, S., Karthik, R., , and
Isha, G. (2017). Automated fake news detection us-
ing linguistic analysis and machine learning. In Inter-
national conference on social computing, behavioral-
cultural modeling, & prediction and behavior repre-
sentation in modeling and simulation(SBP-BRiMS),
pages 1–3.
Xu, D., Tian, Z., Lai, R., Kong, X., Tan, Z., and Shi, W.
(2020). Deep learning based emotion analysis of mi-
croblog texts. Information Fusion, 64:1–11.
Zhang, T., Wu, F., Katiyar, A., Weinberger, K. Q., and Artzi,
Y. (2020). Revisiting few-sample bert fine-tuning.
arXiv preprint arXiv:2006.05987.
Zhou, X. and Zafarani, R. (2020). A survey of fake news:
Fundamental theories, detection methods, and oppor-
tunities. ACM Computing Surveys (CSUR), 53(5):1–
40.
Zhou, X., Zafarani, R., Shu, K., and Liu, H. (2019). Fake
news: Fundamental theories, detection strategies and
challenges. In Proceedings of the twelfth ACM inter-
national conference on web search and data mining,
pages 836–837.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
380