Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.
(2012). Answer Set Solving in Practice. Synthe-
sis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers.
Gelder, A. V. (2008). Another look at graph coloring via
propositional satisfiability. Discrete Applied Mathe-
matics, 156(2):230–243.
Gershenson, C. (2002). Classification of random boolean
networks. In Proceedings of the Eighth International
Conference on Artificial Life, pages 1–8.
Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F.,
Kahn-Perles, B., and Thieffry, D. (2013). Integrative
modelling of the influence of mapk network on can-
cer cell fate decision. PLoS computational biology,
9(10):e1003286.
Huang, S., Eichler, G., Bar-Yam, Y., and Ingber, D. E.
(2005). Cell fates as high-dimensional attractor states
of a complex gene regulatory network. Physical re-
view letters, 94(12):128701.
Inoue, K. (2011). Logic programming for boolean net-
works. In IJCAI 2011, Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pages
924–930.
Iwama, K. and Miyazaki, S. (1994). SAT-variable complex-
ity of hard combinatorial problems. In Proceedings of
the IFIP 13th World Computer Congress, pages 253–
258.
Kauffman, S. A. (1969). Metabolic stability and epigene-
sis in randomly constructed genetic nets. Journal of
Theoretical Biology, 22(3):437–467.
Khaled, T. and Benhamou, B. (2020). An asp-based ap-
proach for boolean networks representation and at-
tractor detection. In LPAR, pages 317–333.
Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L.,
and Gilles, E. (2006). A methodology for the struc-
tural and functional analysis of signaling and regula-
tory networks. BMC Bioinformatics, 7(1):56.
Levy, N., Naldi, A., Hernandez, C., Stoll, G., Thieffry, D.,
Zinovyev, A., Calzone, L., and Paulevé, L. (2018).
Prediction of Mutations to Control Pathways Enabling
Tumour Cell Invasion with the CoLoMoTo Interactive
Notebook (Tutorial) . Frontiers in Physiology, 9:787.
Mbodj, A., Junion, G., Brun, C., Furlong, E. E., and Thief-
fry, D. (2013). Logical modelling of drosophila sig-
nalling pathways. Molecular BioSystems, 9(9):2248–
2258.
Mori, T. and Akutsu, T. (2022). Mini review attractor de-
tection and enumeration algorithms for boolean net-
works. Computational and Structural Biotechnology
Journal.
Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro,
P. T., Chaouiya, C., Helikar, T., Zinovyev, A., Cal-
zone, L., Cohen-Boulakia, S., et al. (2018). The
colomoto interactive notebook: accessible and repro-
ducible computational analyses for qualitative biolog-
ical networks. Frontiers in physiology, 9:680.
Paulevé, L. (2016a). Goal-oriented reduction of automata
networks. In International Conference on Compu-
tational Methods in Systems Biology, volume 9859
of Lecture Notes in Bioinformatics, pages 252–272.
Springer.
Paulevé, L. (2016b). Goal-oriented reduction of automata
networks. In International Conference on Computa-
tional Methods in Systems Biology, pages 252–272.
Springer.
Paulevé, L. (2017). Pint: a static analyzer for transient
dynamics of qualitative networks with IPython inter-
face. In CMSB 2017 - 15th conference on Computa-
tional Methods for Systems Biology, volume 10545 of
Lecture Notes in Computer Science, pages 309–316.
Springer International Publishing.
Paulevé, L., Andrieux, G., and Koeppl, H. (2013). Under-
approximating cut sets for reachability in large scale
automata networks. In International Conference on
Computer Aided Verification, pages 69–84. Springer.
Paulevé, L., Magnin, M., and Roux, O. (2012). From the
Process Hitting to Petri Nets and Back. Technical Re-
port hal-00744807, ETH Zürich.
Rougny, A., Paulevé, L., Teboul, M., and Delaunay, F.
(2021). A detailed map of coupled circadian clock and
cell cycle with qualitative dynamics validation. BMC
bioinformatics, 22(1):1–24.
Rozum, J. C., Deritei, D., Park, K. H., Gómez Tejeda Za-
ñudo, J., and Albert, R. (2021). pystablemotifs:
Python library for attractor identification and control
in Boolean networks. Bioinformatics, 38(5):1465–
1466.
Sahin, Ö., Fröhlich, H., Löbke, C., Korf, U., Burmester,
S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C.,
Thieffry, D., et al. (2009). Modeling erbb receptor-
regulated g1/s transition to find novel targets for de
novo trastuzumab resistance. BMC systems biology,
3(1):1–20.
Simão, E., Remy, E., Thieffry, D., and Chaouiya, C. (2005).
Qualitative modelling of regulated metabolic path-
ways: application to the tryptophan biosynthesis in e.
coli. Bioinformatics, 21(suppl 2):ii190–ii196.
Soh, T., Banbara, M., and Tamura, N. (2017). Proposal and
evaluation of hybrid encoding of CSP to SAT integrat-
ing order and log encodings. International Journal on
Artificial Intelligence Tools, 26(1):1–29.
Tamura, N., Taga, A., Kitagawa, S., and Banbara, M.
(2009). Compiling finite linear CSP into SAT. Con-
straints, 14(2):254–272.
Thieffry, D. and Thomas, R. (1995). Dynamical behaviour
of biological regulatory networks—ii. immunity con-
trol in bacteriophage lambda. Bulletin of Mathemati-
cal Biology, 57(2):277–297.
Thomas, R. (1973). Boolean formalization of genetic
control circuits. Journal of Theoretical Biology,
42(3):563 – 585.
Toda, T. and Soh, T. (2016). Implementing efficient all
solutions SAT solvers. ACM J. Exp. Algorithmics,
21(1):1.12:1–1.12:44.
Trinh, V.-G., Hiraishi, K., and Benhamou, B. (2022). Com-
puting attractors of large-scale asynchronous boolean
networks using minimal trap spaces. In Proceedings
of the 13th ACM International Conference on Bioin-
SAT-Based Method for Finding Attractors in Asynchronous Multi-Valued Networks
173