ing Techniques. International Journal of Agent Tech-
nologies and Systems, 1(2):1–18.
Alvarez, N. and Noda, I. (2018). Inverse Reinforcement
Learning with BDI Agents for Pedestrian Behavior
Simulation. JSAI.
Araiza-Illan, D., Pipe, A. G., and Eder, K. (2016). Intel-
ligent Agent-Based Stimulation for Testing Robotic
Software in Human-Robot Interactions. In Proceed-
ings of the 3rd Workshop on MORSE ’16, pages 9–16,
Leipzig, Germany. ACM Press.
Badica, A., Badica, C., Ivanovic, M., and Mitrovic, D.
(2015). An Approach of Temporal Difference Learn-
ing Using Agent-Oriented Programming. In 20th In-
ternational Conference on Control Systems and Com-
puter Science, pages 735–742. IEEE.
Badica, C., Becheru, A., and Felton, S. (2017). Integration
of jason reinforcement learning agents into an inter-
active application. In 2017 19th International Sympo-
sium on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC), pages 361–368.
Bordini, R. H., Dastani, M., Dix, J., and El Fal-
lah Seghrouchni, A., editors (2009). Multi-Agent
Programming: : Languages, Tools and Applications.
Springer US.
Bordini, R. H., El Fallah Seghrouchni, A., Hindriks, K., Lo-
gan, B., and Ricci, A. (2020). Agent programming
in the cognitive era. Autonomous Agents and Multi-
Agent Systems, 34(2).
Bordini, R. H., H
¨
ubner, J. F., and Wooldridge, M. (2007).
Programming multi-agent systems in AgentSpeak us-
ing Jason. John Wiley & Sons.
Bosello, M. (2019). Integrating BDI and Reinforcement
Learning: the Case Study of Autonomous Driving.
Thesis.
Bosello, M. and Ricci, A. (2020). From Programming
Agents to Educating Agents – A Jason-Based Frame-
work for Integrating Learning in the Development of
Cognitive Agents. In Engineering Multi-Agent Sys-
tems, volume 12058, pages 175–194. Springer Inter-
national Publishing, Cham.
Bratman, M. (2000). Intention, plans, and practical reason.
CSLI, Stanford, Calif.
Broekens, J., Harbers, M., Hindriks, K., Bosch, K. v. d.,
Jonker, C., and Meyer, J.-J. (2010). Do you get it?
user-evaluated explainable bdi agents. In German
Conference on Multiagent System Technologies, pages
28–39. Springer.
Broekens, J., Hindriks, K., and Wiggers, P. (2012). Re-
inforcement Learning as Heuristic for Action-Rule
Preferences. In Collier, R., Dix, J., and Nov
´
ak,
P., editors, Programming Multi-Agent Systems, vol-
ume 6599, pages 25–40. Springer Berlin Heidelberg,
Berlin, Heidelberg.
Bryson, J. (2000). Cross-paradigm analysis of autonomous
agent architecture. Journal of Experimental & Theo-
retical Artificial Intelligence, 12(2):165–189.
Buettner, R. and Baumgartl, H. (2019). A highly effective
deep learning based escape route recognition module
for autonomous robots in crisis and emergency situa-
tions. HICSS, page 8.
Cardoso, R. C. and Ferrando, A. (2021). A review of agent-
based programming for multi-agent systems. Comput-
ers, 10(2):16.
Chaouche, A.-C., El Fallah Seghrouchni, A., Ili
´
e, J.-M.,
and Sa
¨
ıdouni, D. E. (2015). Improving the Con-
textual Selection of BDI Plans by Incorporating Sit-
uated Experiments. In Chbeir, R., Manolopoulos,
Y., Maglogiannis, I., and Alhajj, R., editors, Artifi-
cial Intelligence Applications and Innovations, vol-
ume 458, pages 266–281. Springer International Pub-
lishing, Cham.
Chen, J., Lang, J., Amato, C., and Zhao, D., editors
(2022). Distributed Artificial Intelligence - Third In-
ternational Conference, DAI 2021, Shanghai, China,
December 17-18, 2021, Proceedings, volume 13170
of Lecture Notes in Computer Science. Springer.
Chen, Y., Bauters, K., Liu, W., Hong, J., McAreavey,
K., Godo, L., and Sierra, C. (2014). Agentspeak+:
Agentspeak with probabilistic planning. Proc. of
CIMA, pages 15–20.
Chen, Y., Hong, J., Liu, W., Godo, L., Sierra, C., and
Loughlin, M. (2013). Incorporating PGMs into a BDI
Architecture. In Boella, G., Elkind, E., Savarimuthu,
B. T. R., Dignum, F., and Purvis, M. K., edi-
tors, PRIMA: Principles and Practice of Multi-Agent
Systems, pages 54–69, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Chong, H.-Q., Tan, A.-H., and Ng, G.-W. (2007). Inte-
grated cognitive architectures: a survey. Artificial In-
telligence Review, 28(2):103–130.
Deljoo, A., van Engers, T. M., Gommans, L., de Laat, C. T.,
et al. (2017). What is going on: Utility-based plan
selection in bdi agents. In AAAI Workshops.
Dignum, V. and Dignum, F. (2020). Agents are dead. long
live agents! In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent
Systems, pages 1701–1705.
Erduran,
¨
O. I. (2022). Machine Learning algorithms for
cognitive and autonomous BDI Agents. In Reuss, P.,
editor, LWDA 2022 Workshop: FGWM 2022. ceur-ws,
Hildesheim, Germany.
Erduran,
¨
O. I., Mauri, M., and Minor, M. (2022). Negotia-
tion in ride-hailing between cooperating bdi agents. In
Proceedings of the 14th International Conference on
Agents and Artificial Intelligence - Volume 1, pages
425–432. INSTICC, SciTePress.
Erduran,
¨
O. I., Minor, M., Hedrich, L., Tarraf, A., Ruehl,
F., and Schroth, H. (2019). Multi-agent Learning for
Energy-Aware Placement of Autonomous Vehicles.
In 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), pages 1671–
1678, Boca Raton, FL, USA. IEEE.
Faccin, J. and Nunes, I. (2015). Bdi-agent plan selec-
tion based on prediction of plan outcomes. In 2015
IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology (WI-IAT),
volume 2, pages 166–173.
Feliu, J. (2013). Use of Reinforcement Learning for Plan
Generation in Belief-Desire-Intention (BDI) Agent
Systems. PhD thesis, University of Rhode Island,
Kingston, RI.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
266