REFERENCES
Amato, D., Bosco, G., and Rizzo, R. (2020). Corenup: a
combination of convolutional and recurrent deep neu-
ral networks for nucleosome positioning identifica-
tion. BMC bioinformatics, 21(8):1–14.
Buenrostro, J. D., Wu, B., Chang, H. Y., and Greenleaf,
W. J. (2015). Atac-seq: a method for assaying chro-
matin accessibility genome-wide. Current protocols
in molecular biology, 109(1):21–29.
Chen, R., Kang, R., Fan, X., and Tang, D. (2014). Release
and activity of histone in diseases. Cell death & dis-
ease, 5(8):e1370–e1370.
Chen, W., Feng, P., Ding, H., Lin, H., and Chou, K.-C.
(2016). Using deformation energy to analyze nucle-
osome positioning in genomes. Genomics, 107(2-
3):69–75.
Chen, Z., Zhao, P., Li, C., Li, F., Xiang, D., Chen, Y.-Z.,
Akutsu, T., Daly, R. J., Webb, G. I., Zhao, Q., et al.
(2021). ilearnplus: a comprehensive and automated
machine-learning platform for nucleic acid and pro-
tein sequence analysis, prediction and visualization.
Nucleic acids research, 49(10):e60–e60.
Chereji, R. V. and Clark, D. J. (2018). Major determi-
nants of nucleosome positioning. Biophysical journal,
114(10):2279–2289.
Cho, K. S., Elizondo, L. I., and Boerkoel, C. F. (2004).
Advances in chromatin remodeling and human dis-
ease. Current opinion in genetics & development,
14(3):308–315.
Cui, Y., Xu, Z., and Li, J. (2019). Zcmm: A novel method
using z-curve theory-based and position weight ma-
trix for predicting nucleosome positioning. Genes,
10(10):765.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Di Gangi, M., Lo Bosco, G., and Rizzo, R. (2018). Deep
learning architectures for prediction of nucleosome
positioning from sequences data. BMC bioinformat-
ics, 19(14):127–135.
Floridi, L. and Chiriatti, M. (2020). Gpt-3: Its nature,
scope, limits, and consequences. Minds and Ma-
chines, 30(4):681–694.
Han, G.-S., Li, Q., and Li, Y. (2022). Nucleosome posi-
tioning based on dna sequence embedding and deep
learning. BMC genomics, 23(1):1–11.
Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). Cd-
hit suite: a web server for clustering and comparing
biological sequences. Bioinformatics, 26(5):680–682.
Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021).
Dnabert: pre-trained bidirectional encoder represen-
tations from transformers model for dna-language in
genome. Bioinformatics, 37(15):2112–2120.
Koumakis, L. (2020). Deep learning models in genomics;
are we there yet? Computational and Structural
Biotechnology Journal, 18:1466–1473.
Liu, H., Zhang, R., Xiong, W., Guan, J., Zhuang, Z., and
Zhou, S. (2014). A comparative evaluation on predic-
tion methods of nucleosome positioning. Briefings in
bioinformatics, 15(6):1014–1027.
Luger, K. (2003). Structure and dynamic behavior of nucle-
osomes. Current opinion in genetics & development,
13(2):127–135.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. Advances in
neural information processing systems, 26.
Muhammod, R., Ahmed, S., Md Farid, D., Shatabda,
S., Sharma, A., and Dehzangi, A. (2019). Pyfeat:
a python-based effective feature generation tool for
dna, rna and protein sequences. Bioinformatics,
35(19):3831–3833.
Ozsolak, F., Song, J. S., Liu, X. S., and Fisher, D. E.
(2007). High-throughput mapping of the chromatin
structure of human promoters. Nature biotechnology,
25(2):244–248.
Peckham, H. E., Thurman, R. E., Fu, Y., Stamatoyannopou-
los, J. A., Noble, W. S., Struhl, K., and Weng, Z.
(2007). Nucleosome positioning signals in genomic
dna. Genome research, 17(8):1170–1177.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.
Sakketou, F. and Ampazis, N. (2020). A constrained op-
timization algorithm for learning glove embeddings
with semantic lexicons. Knowledge-Based Systems,
195:105628.
Schmid, C. D. and Bucher, P. (2007). Chip-seq data reveal
nucleosome architecture of human promoters. Cell,
131(5):831–832.
Shtumpf, M., Piroeva, K. V., Agrawal, S. P., Jacob, D. R.,
and Teif, V. B. (2022). Nucposdb: a database of nucle-
osome positioning in vivo and nucleosomics of cell-
free dna. Chromosoma, 131(1):19–28.
Tsompana, M. and Buck, M. J. (2014). Chromatin acces-
sibility: a window into the genome. Epigenetics &
chromatin, 7(1):1–16.
Ulianov, S. V., Khrameeva, E. E., Gavrilov, A. A., Flyamer,
I. M., Kos, P., Mikhaleva, E. A., Penin, A. A., Lo-
gacheva, M. D., Imakaev, M. V., Chertovich, A., et al.
(2016). Active chromatin and transcription play a key
role in chromosome partitioning into topologically as-
sociating domains. Genome research, 26(1):70–84.
Yu, Y., Si, X., Hu, C., and Zhang, J. (2019). A review of
recurrent neural networks: Lstm cells and network ar-
chitectures. Neural computation, 31(7):1235–1270.
Zhang, J., Peng, W., and Wang, L. (2018). Lenup: learning
nucleosome positioning from dna sequences with im-
proved convolutional neural networks. Bioinformat-
ics, 34(10):1705–1712.
NP-BERT: A Two-Staged BERT Based Nucleosome Positioning Prediction Architecture for Multiple Species
187