ACKNOWLEDGEMENTS
This research received funding from the Flemish
Government (AI Research Program) and the VLAIO
project HBC.2021.0730. We thank Aperam for sup-
plying the steel surface defects dataset.
REFERENCES
Anari, N., Gharan, S. O., and Rezaei, A. (2016). Monte
carlo markov chain algorithms for sampling strongly
rayleigh distributions and determinantal point pro-
cesses.
Caramalau, R., Bhattarai, B., and Kim, T.-K. (2020). Se-
quential graph convolutional network for active learn-
ing.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2016). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs.
Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020).
A simple framework for contrastive learning of visual
representations. arXiv preprint arXiv:2002.05709.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255.
Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., and Zis-
serman, A. (2021). With a little help from my friends:
Nearest-neighbor contrastive learning of visual repre-
sentations.
Fei-Fei, L., Fergus, R., and Perona, P. (2004). Learning gen-
erative visual models from few training examples: An
incremental bayesian approach tested on 101 object
categories. Computer Vision and Pattern Recognition
Workshop.
Freund, Y., Seung, H. S., Shamir, E., and Tishby, N. (1995).
Selective sampling using the query by committee al-
gorithm. In Machine Learning, pages 133–168.
Gautier, G., Polito, G., Bardenet, R., and Valko, M.
(2019). DPPy: DPP Sampling with Python. Jour-
nal of Machine Learning Research - Machine Learn-
ing Open Source Software (JMLR-MLOSS). Code
at http://github.com/guilgautier/DPPy/ Documenta-
tion at http://dppy.readthedocs.io/.
He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2019).
Momentum contrast for unsupervised visual represen-
tation learning.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Joseph, K. J., Khan, S., Khan, F. S., and Balasubramanian,
V. N. (2021). Towards open world object detection.
Joshi, A. J., Porikli, F., and Papanikolopoulos, N. (2009).
Multi-class active learning for image classification. In
2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2372–2379.
Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T.
(2007). Active learning with gaussian processes for
object categorization. In 2007 IEEE 11th Interna-
tional Conference on Computer Vision, pages 1–8.
Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical report.
Kulesza, A. (2012). Determinantal point processes for ma-
chine learning. Foundations and Trends® in Machine
Learning, 5(2-3):123–286.
Li, C., Jegelka, S., and Sra, S. (2016a). Fast sampling for
strongly rayleigh measures with application to deter-
minantal point processes.
Li, C., Sra, S., and Jegelka, S. (2016b). Fast mixing
markov chains for strongly rayleigh measures, dpps,
and constrained sampling. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc.
MacKay, D. J. C. (1992). Information-based objective func-
tions for active data selection. Neural Computation,
4(4):590–604.
McCallum, A. and Nigam, K. (1998). Employing em and
pool-based active learning for text classification. In
Proceedings of the Fifteenth International Conference
on Machine Learning, ICML ’98, page 350–358, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.
Neven, R. and Goedem
´
e, T. (2021). A multi-branch u-net
for steel surface defect type and severity segmenta-
tion. Metals, 11(6).
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation.
Sener, O. and Savarese, S. (2017). Active learning for con-
volutional neural networks: A core-set approach.
Sinha, S., Ebrahimi, S., and Darrell, T. (2019). Variational
adversarial active learning. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 5971–5980.
Srinivas, A., Laskin, M., and Abbeel, P. (2020). Curl: Con-
trastive unsupervised representations for reinforce-
ment learning.
Tong, S. and Koller, D. (2002). Support vector machine
active learning with applications to text classification.
J. Mach. Learn. Res., 2:45–66.
Yoo, D. and Kweon, I. S. (2019). Learning loss for active
learning. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
93–102.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
104