REFERENCES
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas,
L. J. (2017). Learning representations and generative
models for 3D point clouds.
Allen, B., Curless, B., Curless, B., and Popovi
´
c, Z. (2003).
The space of human body shapes: Reconstruction
and parameterization from range scans. ACM Trans.
Graph., 22(3):587–594.
Barreira, N., Penedo, M. G., Mari
˜
no, C., and Ansia, F. M.
(2003). Topological active volumes. In Petkov, N. and
Westenberg, M. A., editors, Computer Analysis of Im-
ages and Patterns, pages 337–344, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. (2015). ShapeNet:
An Information-Rich 3D Model Repository. Technical
Report arXiv:1512.03012 [cs.GR], Stanford Univer-
sity — Princeton University — Toyota Technological
Institute at Chicago.
Cohen, L. D. (1991). On active contour models and balloons.
CVGIP: Image Understanding, 53(2):211 – 218.
Dubrovina, A., Xia, F., Achlioptas, P., Shalah, M., Groscot,
R., and Guibas, L. J. (2019). Composite shape model-
ing via latent space factorization. In The IEEE Interna-
tional Conference on Computer Vision (ICCV).
Fan, H., Su, H., and Guibas, L. J. (2016). A point set
generation network for 3D object reconstruction from
a single image. CoRR, abs/1612.00603.
Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung,
O., Cohen-Or, D., and Mitra, N. J. (2014). Meta-
representation of shape families. ACM Trans. Graph.,
33(4):34:1–34:11.
Gao, L., Lai, Y.-K., Huang, Q., and Hu, S. (2013). A data-
driven approach to realistic shape morphing. Computer
Graphics Forum, 32.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial networks.
Groscot, R. (2021). Separable 3D Shape Representations
for Shape Processing. PhD thesis. Th
`
ese de doctorat
dirig
´
ee par Cohen, Laurent David Math
´
ematiques ap-
pliqu
´
ees Universit
´
e Paris sciences et lettres 2021.
Groscot, R., Cohen, L., and Guibas, L. (2019). Shape part
transfer via semantic latent space factorization. In
Nielsen, F. and Barbaresco, F., editors, Geometric Sci-
ence of Information, pages 511–519, Cham. Springer
International Publishing.
Groscot, R. and Cohen, L. D. (2022). Deformable voxel
grids for shape comparisons. In Jiang, X., Tao, W.,
Zeng, D., and Xie, Y., editors, Fourteenth International
Conference on Digital Image Processing (ICDIP 2022),
volume 12342, page 123423G. International Society
for Optics and Photonics, SPIE.
Groueix, T., Fisher, M., Kim, V. G., Russell, B., and Aubry,
M. (2018). AtlasNet: A Papier-M
ˆ
ach
´
e Approach to
Learning 3D Surface Generation. In CVPR 2018, Salt
Lake City, United States.
Haibin, H., Kalogerakis, E., and Marlin, B. (2015). Analysis
and synthesis of 3D shape families via deep-learned
generative models of surfaces. Computer Graphics
Forum, 34.
Hanocka, R., Fish, N., Wang, Z., Giryes, R., Fleishman,
S., and Cohen-Or, D. (2018). Alignet: Partial-shape
agnostic alignment via unsupervised learning.
Hao, Z., Averbuch-Elor, H., Snavely, N., and Belongie, S.
(2020). Dualsdf: Semantic shape manipulation us-
ing a two-level representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Hemalatha, R., Thamizhvani, T., Dhivya, A. J. A., Joseph,
J. E., Babu, B., and Chandrasekaran, R. (2018). Active
contour based segmentation techniques for medical
image analysis. In Koprowski, R., editor, Medical
and Biological Image Analysis, chapter 2. IntechOpen,
Rijeka.
Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V.
(2012). A probabilistic model for component-based
shape synthesis. ACM Trans. Graph., 31(4):55:1–
55:11.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. International Journal of Com-
puter Vision, 1(4):321–331.
Kingma, D. P. and Welling, M. (2013). Auto-Encoding Vari-
ational Bayes. arXiv e-prints, page arXiv:1312.6114.
Kleineberg, M., Fey, M., and Weichert, F. (2020). Adversar-
ial generation of continuous implicit shape representa-
tions.
Kurenkov, A., Ji, J., Garg, A., Mehta, V., Gwak, J., Choy,
C., and Savarese, S. (2017). Deformnet: Free-form
deformation network for 3d shape reconstruction from
a single image.
Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., and
Guibas, L. J. (2017). GRASS: Generative recursive
autoencoders for shape structures. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2017).
Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3d surface construction algorithm.
SIGGRAPH ’87, New York, NY, USA.
Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A.
(2019). Occupancy flow: 4d reconstruction by learning
particle dynamics. In International Conference on
Computer Vision.
Park, E., Yang, J., Yumer, E., Ceylan, D., and Berg, A. C.
(2017). Transformation-grounded image generation
network for novel 3d view synthesis. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. (2019). Deepsdf: Learning continuous signed
distance functions for shape representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2016). Pointnet:
Deep learning on point sets for 3D classification and
segmentation.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Pointnet++:
GRAPP 2023 - 18th International Conference on Computer Graphics Theory and Applications
108