Chen, G., Cao, H., Ye, C., Zhang, Z., Liu, X., Mo, X., Qu,
Z., Conradt, J., Röhrbein, F., and Knoll, A. (2019).
Multi-Cue Event Information Fusion for Pedestrian
Detection With Neuromorphic Vision Sensors. Fron-
tiers in Neurorobotics, 13:10.
de Tournemire, P., Nitti, D., Perot, E., Migliore, D., and
Sironi, A. (2020). A Large Scale Event-based Detec-
tion Dataset for Automotive. arXiv, abs/2001.08499.
Guo, M., Huang, J., and Chen, S. (2017). Live demon-
stration: A 768 × 640 pixels 200Meps dynamic vi-
sion sensor. In 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–1.
Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016).
DVS Benchmark Datasets for Object Tracking, Ac-
tion Recognition, and Object Recognition. Frontiers
in Neuroscience, 10.
Hu, Y., Liu, S.-C., and Delbruck, T. (2021). v2e: From
Video Frames to Realistic DVS Events. In 2021
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1312–
1321.
Islam, M. Z., Islam, M., and Rana, M. S. (2015). Prob-
lem Analysis of Multiple Object Tracking System: A
Critical Review. International Journal of Advanced
Research in Computer and Communication Engineer-
ing, 4:374–377.
Jiang, Z., Xia, P., Huang, K., Stechele, W., Chen, G., Bing,
Z., and Knoll, A. (2019). Mixed Frame-/Event-Driven
Fast Pedestrian Detection. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages
8332–8338.
Li, Y., Zhou, H., Yang, B., Zhang, Y., Cui, Z., Bao, H., and
Zhang, G. (2021). Graph-based Asynchronous Event
Processing for Rapid Object Recognition. In 2021
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 914–923.
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., and Kim,
T.-K. (2021). Multiple Object Tracking: A Literature
Review. Artificial Intelligence, 293:103448.
Marcireau, A., Ieng, S.-H., Simon-Chane, C., and Benos-
man, R. B. (2018). Event-Based Color Segmenta-
tion With a High Dynamic Range Sensor. Frontiers
in Neuroscience, 12.
Miao, S., Chen, G., Ning, X., Zi, Y., Ren, K., Bing, Z., and
Knoll, A. (2019). Neuromorphic Vision Datasets for
Pedestrian Detection, Action Recognition, and Fall
Detection. Frontiers in Neurorobotics, 13:38.
Moeys, D. P., Corradi, F., Li, C., Bamford, S. A.,
Longinotti, L., Voigt, F. F., Berry, S., Taverni, G.,
Helmchen, F., and Delbruck, T. (2018). A Sensitive
Dynamic and Active Pixel Vision Sensor for Color or
Neural Imaging Applications. IEEE Transactions on
Biomedical Circuits and Systems, 12(1):123–136.
Mondal, A., R, S., Giraldo, J. H., Bouwmans, T., and
Chowdhury, A. S. (2021). Moving Object Detection
for Event-based Vision using Graph Spectral Clus-
tering. In 2021 IEEE/CVF International Conference
on Computer Vision Workshops (ICCVW), pages 876–
884.
Mueggler, E., Bartolozzi, C., and Scaramuzza, D.
(2017a). Fast Event-based Corner Detection. In
Tae-Kyun Kim, Stefanos Zafeiriou, G. B. and Miko-
lajczyk, K., editors, Proceedings of the British Ma-
chine Vision Conference (BMVC), pages 33.1–33.11.
BMVA Press.
Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., and
Scaramuzza, D. (2017b). The Event-Camera Dataset
and Simulator: Event-based Data for Pose Estimation,
Visual Odometry, and SLAM. The International Jour-
nal of Robotics Research, 36(2):142–149.
Nozaki, Y. and Delbruck, T. (2017). Temperature and Para-
sitic Photocurrent Effects in Dynamic Vision Sensors.
IEEE Transactions on Electron Devices, 64(8):3239–
3245.
Ojeda, F. C., Bisulco, A., Kepple, D., Isler, V., and Lee,
D. D. (2020). On-Device Event Filtering with Bi-
nary Neural Networks for Pedestrian Detection Using
Neuromorphic Vision Sensors. In 2020 IEEE Interna-
tional Conference on Image Processing (ICIP), pages
3084–3088.
Pi ˛atkowska, E., Belbachir, A. N., Schraml, S., and Gelautz,
M. (2012). Spatiotemporal multiple persons tracking
using dynamic vision sensor. In 2012 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshops, pages 35–40.
Taverni, G., Paul Moeys, D., Li, C., Cavaco, C., Motsnyi,
V., San Segundo Bello, D., and Delbruck, T. (2018).
Front and Back Illuminated Dynamic and Active Pixel
Vision Sensors Comparison. IEEE Transactions on
Circuits and Systems II: Express Briefs, 65(5):677–
681.
Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar,
B. B. G., Geiger, A., and Leibe, B. (2019). MOTS:
Multi-Object Tracking and Segmentation. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 7934–7943.
Xu, Y., Zhou, X., Chen, S., and Li, F. (2019). Deep Learn-
ing for Multiple Object Tracking: A Survey. IET Com-
puter Vision, 13(4):355–368.
Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham,
A., and Trigoni, N. (2019). Learning Object Bound-
ing Boxes for 3D Instance Segmentation on Point
Clouds. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Zhao, L. and Tao, W. (2020). JSNet: Joint Instance and
Semantic Segmentation of 3D Point Clouds. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(07):12951–12958.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
300