and accuracy. We will explore the possibility of train-
ing a model to predict the distortion coefficients inde-
pendently. We will also focus on the task of estimat-
ing the camera pose with respect to the playfield.
REFERENCES
Alem
´
an-Flores, M., Alvarez, L., Gomez, L., and Santana-
Cedr
´
es, D. (2014). Automatic lens distortion correc-
tion using one-parameter division models. Image Pro-
cessing On Line, 4:327–343.
Bukhari, F. and Dailey, M. N. (2013). Automatic radial
distortion estimation from a single image. Journal of
mathematical imaging and vision, 45(1):31–45.
Duane, C. B. (1971). Close-range camera calibration. Pho-
togramm. Eng, 37(8):855–866.
Fitzgibbon, A. W. (2001). Simultaneous linear estimation
of multiple view geometry and lens distortion. In Pro-
ceedings of the 2001 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition.
CVPR 2001, volume 1, pages I–I. IEEE.
Giancola, S., Amine, M., Dghaily, T., and Ghanem, B.
(2018). Soccernet: A scalable dataset for action spot-
ting in soccer videos. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion workshops, pages 1711–1721.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hore, A. and Ziou, D. (2010). Image quality metrics: Psnr
vs. ssim, in ‘2010 20th international conference on
pattern recognition’. Istanbul: IEEE, pages 2366–
2369.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Jiang, Y., Cui, K., Chen, L., Wang, C., and Xu, C. (2020).
Soccerdb: A large-scale database for comprehensive
video understanding. In Proceedings of the 3rd Inter-
national Workshop on Multimedia Content Analysis in
Sports, pages 1–8.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Suk-
thankar, R., and Fei-Fei, L. (2014). Large-scale video
classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 1725–1732.
Kazemi, V., Burenius, M., Azizpour, H., and Sullivan, J.
(2013). Multi-view body part recognition with ran-
dom forests. In 2013 24th British Machine Vision
Conference, BMVC 2013; Bristol; United Kingdom;
9 September 2013 through 13 September 2013. British
Machine Vision Association.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Klette, R., Koschan, A., and Schluns, K. (1998). Three-
dimensional data from images. Springer-Verlag Sin-
gapore Pte. Ltd., Singapore.
Liao, K., Lin, C., and Zhao, Y. (2021). A deep ordinal dis-
tortion estimation approach for distortion rectification.
IEEE Transactions on Image Processing, 30:3362–
3375.
Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-
Jimenez, J., and Haro, G. (2019). Deep single image
camera calibration with radial distortion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11817–11825.
Pettersen, S. A., Johansen, D., Johansen, H., Berg-
Johansen, V., Gaddam, V. R., Mortensen, A.,
Langseth, R., Griwodz, C., Stensland, H. K., and
Halvorsen, P. (2014). Soccer video and player posi-
tion dataset. In Proceedings of the 5th ACM Multime-
dia Systems Conference, pages 18–23.
Rong, J., Huang, S., Shang, Z., and B, X. Y. (2017). Radial
lens distortion correction using convolutional neural
networks trained with synthesized images. Computer
Vision – ACCV 2016, pages 35–49.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211–252.
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning, pages 6105–
6114. PMLR.
Van Zandycke, G., Somers, V., Istasse, M., Don, C. D., and
Zambrano, D. (2022). Deepsportradar-v1: Computer
vision dataset for sports understanding with high qual-
ity annotations. In Proceedings of the 5th Interna-
tional ACM Workshop on Multimedia Content Analy-
sis in Sports, pages 1–8.
Xiao, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2012).
Recognizing scene viewpoint using panoramic place
representation. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 2695–2702.
Zanganeh, A., Jampour, M., and Layeghi, K. (2022). Iaufd:
A 100k images dataset for automatic football im-
age/video analysis. IET Image Processing.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
308