Ly, N. T., Nguyen, H. T., & Nakagawa, M. (2021). 2D Self-
attention Convolutional Recurrent Network for Offline
Handwritten Text Recognition. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 12821 LNCS, 191–204.
https://doi.org/10.1007/978-3-030-86549-8_13/COVER
MMCV Contributors. (2018). {MMCV: OpenMMLab}
Computer Vision Foundation. https://github.com/open-
mmlab/mmcv
Nassar, A., Livathinos, N., Lysak, M., & Staar, P. (2022).
TableFormer: Table Structure Understanding
with Transformers. https://doi.org/10.48550/arxiv.
2203.01017
Prasad, D., Gadpal, A., Kapadni, K., Visave, M., &
Sultanpure, K. (2020). CascadeTabNet: An approach
for end to end table detection and structure recognition
from image-based documents. IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition Workshops, 2020-June, 2439–2447.
https://doi.org/10.48550/arxiv.2004.12629
Qiao, L., Li, Z., Cheng, Z., Zhang, P., Pu, S., Niu, Y., Ren,
W., Tan, W., & Wu, F. (2021). LGPMA: Complicated
Table Structure Recognition with Local and Global
Pyramid Mask Alignment. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12821 LNCS, 99–114. https://doi.org/10.1007/978-3-
030-86549-8_7/TABLES/4
Raja, S., Mondal, A., & Jawahar, C. v. (2020). Table
Structure Recognition Using Top-Down and Bottom-
Up Cues. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12373 LNCS, 70–86. https://doi.org/10.1007/978-3-
030-58604-1_5/FIGURES/8
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-
CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6),
1137–1149. https://doi.org/10.48550/arxiv.1506.01497
Schreiber, S., Agne, S., Wolf, I., Dengel, A., & Ahmed, S.
(2017). DeepDeSRT: Deep Learning for Detection and
Structure Recognition of Tables in Document Images.
Proceedings of the International Conference on
Document Analysis and Recognition, ICDAR, 1, 1162–
1167. https://doi.org/10.1109/ICDAR.2017.192
Smock Brandon, Pesala Rohith, & Abraham Robin. (2022).
PubTables-1M: Towards comprehensive table
extraction from unstructured documents. Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 4634–4642.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).
Attention is all you need. Advances in Neural
Information Processing Systems, 2017-December,
5999–6009.
Wang, Y., Phillips, I. T., & Haralick, R. M. (2004). Table
structure understanding and its performance evaluation.
Pattern Recognition, 37
(7), 1479–1497. https://doi.org/
10.1016/J.PATCOG.2004.01.012
Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., & Xiao,
R. (2021). PingAn-VCGroup’s Solution for ICDAR
2021 Competition on Scientific Literature Parsing Task
B: Table Recognition to HTML. https://doi.org/
10.48550/arxiv.2105.01848
Zhang, Z., Zhang, J., Du, J., & Wang, F. (2022). Split,
Embed and Merge: An accurate table structure
recognizer. Pattern Recognition, 126, 108565.
https://doi.org/10.1016/J.PATCOG.2022.108565
Zheng, X., Burdick, D., Popa, L., Zhong, X., & Wang, N.
X. R. (2021). Global Table Extractor (GTE): A
Framework for Joint Table Identification and Cell
Structure Recognition Using Visual Context. 2021
IEEE Winter Conference on Applications of Computer
Vision (WACV), 697–706. https://doi.org/10.1109/
WACV48630.2021.00074
Zhong, X., ShafieiBavani, E., & Jimeno Yepes, A. (2020).
Image-Based Table Recognition: Data, Model, and
Evaluation. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12366 LNCS, 564–580. https://doi.org/10.1007/978-3-
030-58589-1_34/TABLES/3.