Bergstra, J. and Bengio, Y. (2018). Random Search for
Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13.
Borovykh, A., Bohte, S., and Oosterlee, C. W. (2018). Con-
ditional Time Series Forecasting with Convolutional
Neural Networks. arXiv:1703.04691 [stat].
Catlin, C. (2022). AutoTS.
Chatterjee, S., Bopardikar, R., Guerard, M., Thakore, U.,
and Jiang, X. (2022). MOSPAT: AutoML based
Model Selection and Parameter Tuning for Time Se-
ries Anomaly Detection. arXiv:2205.11755.
Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., and
Xiao, T. (2015). Mxnet.
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y.
(2014). Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation.
Choudhary, D., Kejariwal, A., and Orsini, F. (2017). On
the Runtime-Efficacy Trade-off of Anomaly Detection
Techniques for Real-Time Streaming Data.
Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and
Yang, S. (2017). AdaNet: Adaptive Structural Learn-
ing of Artificial Neural Networks. In Proc. of the 34th
Intl. Conf. on Machine Learning.
De Romblay, A. (2022). MLBox.
Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. (2020). AutoGluon-Tabular:
Robust and Accurate AutoML for Structured Data.
Facebook (2022). Prophet.
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and
Hutter, F. (2021). Auto-Sklearn 2.0.
Flynn, C. (2022). PyPI Stats.
Francois, C. (2022). Keras: the Python deep learning API.
Ghaderi, H. and Kabiri, P. (2012). Fourier transform and
correlation-based feature selection for fault detection
of automobile engines. In The 16th CSI Intl. Sympo-
sium on Artificial Intelligence and Signal Processing.
Github (2022). Github.
Goix, N. (2016). How to Evaluate the Quality
of Unsupervised Anomaly Detection Algorithms?
arXiv:1607.01152.
Grimes, D., Ifrim, G., O’Sullivan, B., and Simonis, H.
(2014). Analyzing the impact of electricity price fore-
casting on energy cost-aware scheduling. Sustainable
Computing: Informatics and Systems, 4.
G
¨
urtler, M. and Paulsen, T. (2018). The effect of wind and
solar power forecasts on day-ahead and intraday elec-
tricity prices in Germany. Energy Economics, 75.
H2O (2022). H2O.ai.
He, X., Zhao, K., and Chu, X. (2021). AutoML: A survey of
the state-of-the-art. Knowledge-Based Systems, 212.
Hesterman, J. Y., Caucci, L., Kupinski, M. A., Barrett,
H. H., and Furenlid, L. R. (2010). Maximum-
Likelihood Estimation With a Contracting-Grid
Search Algorithm. IEEE Trans. on Nuclear Science.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term
Memory. Neural computation, 9.
Hundman, K., Constantinou, V., Laporte, C., Colwell, I.,
and Soderstrom, T. (2018). Detecting Spacecraft
Anomalies Using LSTMs and Nonparametric Dy-
namic Thresholding. Proc. of the 24th ACM SIGKDD
Intl. Conf. on Knowledge Discovery & Data Mining.
Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Ac-
celerating Deep Network Training by Reducing Inter-
nal Covariate Shift. arXiv:1502.03167 [cs].
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33.
Javeri, I. Y., Toutiaee, M., Arpinar, I. B., Miller, J. A., and
Miller, T. W. (2021). Improving Neural Networks
for Time-Series Forecasting using Data Augmentation
and AutoML. In 2021 IEEE Seventh Intl. Conf. on Big
Data Computing Service and Applications.
Jin, H., Song, Q., and Hu, X. (2019). Auto-Keras: An Ef-
ficient Neural Architecture Search System. In 25th
Conf. on Knowledge Discovery & Data Mining. As-
sociation for Computing Machinery.
Kavanagh, K., Barrett, M., and Conlon, M. (2017). Short-
term electricity load forecasting for the integrated sin-
gle electricity market (I-SEM). In 2017 52nd Intl.
Universities Power Engineering Conf.
Kaytez, F., Taplamacioglu, M. C., Cam, E., and Hardalac, F.
(2015). Forecasting electricity consumption: A com-
parison of regression analysis, neural networks and
least squares support vector machines. Intl. Journal
of Electrical Power & Energy Systems, 67.
Kim, Y., Wang, P., Zhu, Y., and Mihaylova, L. (2018). A
Capsule Network for Traffic Speed Prediction in Com-
plex Road Networks. arXiv:1807.10603.
Komer, B., Bergstra, J., and Eliasmith, C. (2019).
Hyperopt-Sklearn. In Automated Machine Learning:
Methods, Systems, Challenges.
Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T.
(2019). Quantifying the Carbon Emissions of Ma-
chine Learning.
Lago, J., De Ridder, F., and De Schutter, B. (2018). Fore-
casting spot electricity prices: Deep learning ap-
proaches and empirical comparison of traditional al-
gorithms. Applied Energy, 221.
Li, Y., Chen, Z., Zha, D., Zhou, K., Jin, H., Chen, H.,
and Hu, X. (2020a). AutoOD: Automated Outlier De-
tection via Curiosity-guided Search and Self-imitation
Learning.
Li, Y., Zha, D., Venugopal, P., Zou, N., and Hu, X. (2020b).
PyODDS: An End-to-end Outlier Detection System
with Automated Machine Learning. In Companion
Proc. of the Web Conf.
LinkedIn (2022). Luminol.
Lu, Y. and Xu, L. D. (2019). Internet of Things (IoT) Cy-
bersecurity Research: A Review of Current Research
Topics. IEEE Internet of Things Journal, 6.
Lynch, C., Kehoe, J., Bain, R., Zhang, F., Flynn, J.,
O’Leary, C., and Smith, G. (2019). Application of a
SVM-based model for day-ahead electricity price pre-
diction for the single electricity market in Ireland. In
39th Intl. Symposium on Forecasting.
A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection
431