Huynh, M. and Alaghband, G. (2020). AOL: adaptive on-
line learning for human trajectory prediction in dy-
namic video scenes. In 31st British Machine Vision
Conference 2020.
Katyal, K. D., Hager, G. D., and Huang, C.-M. (2020).
Intent-aware pedestrian prediction for adaptive crowd
navigation. In 2020 IEEE International Conference
on Robotics and Automation.
Kosaraju, V., Sadeghian, A., Mart
´
ın-Mart
´
ın, R., Reid, I.,
Rezatofighi, H., and Savarese, S. (2019). Social-bigat:
Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.
Lee, N., Choi, W., Vernaza, P., Choy, C. B., Torr, P. H. S.,
and Chandraker, M. (2017). Desire: Distant future
prediction in dynamic scenes with interacting agents.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.
Liang, J., Jiang, L., and Hauptmann, A. (2020). Simaug:
Learning robust representations from simulation for
trajectory prediction. In 2020 European Conference
on Computer Vision, Cham. Springer International
Publishing.
Liang, J., Jiang, L., Niebles, J. C., Hauptmann, A. G., and
Fei-Fei, L. (2019). Peeking into the future: Predict-
ing future person activities and locations in videos. In
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Makansi, O., Cicek, O., Buchicchio, K., and Brox, T.
(2020). Multimodal future localization and emergence
prediction for objects in egocentric view with a reach-
ability prior. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition.
Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli,
E., Malik, J., and Gaidon, A. (2020). It is not the
journey but the destination: Endpoint conditioned tra-
jectory prediction. In 2020 European Conference on
Computer Vision, Cham. Springer International Pub-
lishing.
Marchetti, F., Becattini, F., Seidenari, L., and Del Bimbo,
A. (2020). Multiple trajectory prediction of mov-
ing agents with memory augmented networks. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.
Pang, B., Zhao, T., Xie, X., and Wu, Y. N. (2021). Trajec-
tory prediction with latent belief energy-based model.
In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition.
Poibrenski, A., Klusch, M., Vozniak, I., and M
¨
uller, C.
(2020). M2P3: Multimodal Multi-Pedestrian Path
Prediction by Self-Driving Cars with Egocentric Vi-
sion, page 190–197. Association for Computing Ma-
chinery, New York, NY, USA.
Qiu, J., Lo, F. P.-W., Gu, X., Sun, Y., Jiang, S., and Lo, B.
(2021). Indoor future person localization from an ego-
centric wearable camera. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems.
Rasouli, A., Kotseruba, I., Kunic, T., and Tsotsos, J. (2019).
Pie: A large-scale dataset and models for pedestrian
intention estimation and trajectory prediction. In 2019
IEEE/CVF International Conference on Computer Vi-
sion.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition.
Rodin, I., Furnari, A., Mavroeidis, D., and Farinella, G. M.
(2021). Predicting the future from first person (ego-
centric) vision: A survey. Computer Vision and Image
Understanding, 211:103252.
Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M.,
Gavrila, D. M., and Arras, K. O. (2020). Human mo-
tion trajectory prediction: a survey. The International
Journal of Robotics Research, 39(8):895–935.
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N.,
Rezatofighi, H., and Savarese, S. (2019). Sophie: An
attentive gan for predicting paths compliant to social
and physical constraints. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition.
Salzmann, T., Ivanovic, B., Chakravarty, P., and Pavone,
M. (2020). Trajectron++: Dynamically-feasible tra-
jectory forecasting with heterogeneous data. In 2020
European Conference on Computer Vision, Cham.
Springer International Publishing.
Seiskari, O., Rantalankila, P., Kannala, J., Ylilammi, J.,
Rahtu, E., and Solin, A. (2022). Hybvio: Pushing the
limits of real-time visual-inertial odometry. In Pro-
ceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision.
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M.,
and Luo, P. (2021). Segformer: Simple and efficient
design for semantic segmentation with transformers.
In Advances in Neural Information Processing Sys-
tems, volume 34.
Yagi, T., Mangalam, K., Yonetani, R., and Sato, Y. (2018).
Future person localization in first-person videos. In
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Yuan, Y., Chen, X., and Wang, J. (2020). Object-contextual
representations for semantic segmentation. In 2020
European Conference on Computer Vision.
Zhang, P., Ouyang, W., Zhang, P., Xue, J., and Zheng, N.
(2019). Sr-lstm: State refinement for lstm towards
pedestrian trajectory prediction. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion.
Zhao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao,
Y., Wang, Y., and Wu, Y. N. (2019). Multi-agent ten-
sor fusion for contextual trajectory prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
630