Kieninger, T. G. (1998). Table structure recognition based
on robust block segmentation. Https://Doi.Org/
10.1117/12.304642, 3305, 22–32. https://doi.org/10.
1117/12.304642
Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., & Li, Z.
(2019). TableBank: A Benchmark Dataset for Table
Detection and Recognition. https://doi.org/10.48550/
arxiv.1903.01949
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully
convolutional networks for semantic segmentation.
2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 07-12-June-2015, 3431–
3440. https://doi.org/10.1109/CVPR.2015.7298965
Lu, N., Yu, W., Qi, X., Chen, Y., Gong, P., Xiao, R., & Bai,
X. (2021). MASTER: Multi-aspect non-local network
for scene text recognition. Pattern Recognition, 117,
107980. https://doi.org/10.1016/J.PATCOG.2021.
107980
Ly, N. T., Nguyen, H. T., & Nakagawa, M. (2021). 2D Self-
attention Convolutional Recurrent Network for Offline
Handwritten Text Recognition. Lecture Notes in
Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 12821 LNCS, 191–204.
https://doi.org/10.1007/978-3-030-86549-8_13/COVER
MMCV Contributors. (2018). {MMCV: OpenMMLab}
Computer Vision Foundation. https://github.com/open-
mmlab/mmcv
Nassar, A., Livathinos, N., Lysak, M., & Staar, P. (2022).
TableFormer: Table Structure Understanding with
Transformers. https://doi.org/10.48550/arxiv.2203.
01017
Qasim, S. R., Mahmood, H., & Shafait, F. (2019).
Rethinking table recognition using graph neural
networks. Proceedings of the International Conference
on Document Analysis and Recognition, ICDAR, 142–
147. https://doi.org/10.1109/ICDAR.2019.00031
Qiao, L., Li, Z., Cheng, Z., Zhang, P., Pu, S., Niu, Y., Ren,
W., Tan, W., & Wu, F. (2021). LGPMA: Complicated
Table Structure Recognition with Local and Global
Pyramid Mask Alignment. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12821 LNCS, 99–114. https://doi.org/10.1007/978-3-
030-86549-8_7/TABLES/4
Raja, S., Mondal, A., & Jawahar, C. v. (2020). Table
Structure Recognition Using Top-Down and Bottom-
Up Cues. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12373 LNCS, 70–86. https://doi.org/10.1007/978-3-
030-58604-1_5/FIGURES/8
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-
CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6),
1137–1149. https://doi.org/10.48550/arxiv.1506.01497
Schreiber, S., Agne, S., Wolf, I., Dengel, A., & Ahmed, S.
(2017). DeepDeSRT: Deep Learning for Detection and
Structure Recognition of Tables in Document Images.
Proceedings of the International Conference on
Document Analysis and Recognition, ICDAR, 1, 1162–
1167. https://doi.org/10.1109/ICDAR.2017.192
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).
Attention is all you need. Advances in Neural
Information Processing Systems, 2017-December,
5999–6009.
Wang, Y., Phillips, I. T., & Haralick, R. M. (2004). Table
structure understanding and its performance evaluation.
Pattern Recognition, 37(7), 1479–1497.
https://doi.org/10.1016/J.PATCOG.2004.01.012
Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., & Xiao,
R. (2021). PingAn-VCGroup’s Solution for ICDAR
2021 Competition on Scientific Literature Parsing Task
B: Table Recognition to HTML. https://doi.
org/10.48550/arxiv.2105.01848
Zhang, Z., Zhang, J., Du, J., & Wang, F. (2022). Split,
Embed and Merge: An accurate table structure
recognizer. Pattern Recognition, 126, 108565.
https://doi.org/10.1016/J.PATCOG.2022.108565
Zheng, X., Burdick, D., Popa, L., Zhong, X., & Wang, N.
X. R. (2021). Global Table Extractor (GTE): A
Framework for Joint Table Identification and Cell
Structure Recognition Using Visual Context. 2021
IEEE Winter Conference on Applications of Computer
Vision (WACV), 697–706. https://doi.org/10.1109/
WACV48630.2021.00074
Zhong, X., ShafieiBavani, E., & Jimeno Yepes, A. (2020).
Image-Based Table Recognition: Data, Model, and
Evaluation. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12366 LNCS, 564–580. https://doi.org/10.1007/978-3-
030-58589-1_34/TABLES/3.