ing and Computer Graphics Theory and Applica-
tions, VISIGRAPP 2022, Volume 5: VISAPP, On-
line Streaming, February 6-8, 2022, pages 155–165.
SCITEPRESS.
Li, B. and Dong, A. (2021). Multi-task learning with at-
tention : Constructing auxiliary tasks for learning to
learn. In 2021 IEEE 33rd International Conference on
Tools with Artificial Intelligence (ICTAI), pages 145–
152.
Li, Y., Chen, X., Zhu, Z., Xie, L., Huang, G., Du, D., and
Wang, X. (2018). Attention-guided unified network
for panoptic segmentation. CoRR, abs/1812.03904.
Li, Z., Wang, W., Xie, E., Yu, Z., Anandkumar, A., Alvarez,
J. M., Lu, T., and Luo, P. (2021). Panoptic segformer.
CoRR, abs/2109.03814.
Liebel, L. and K
¨
orner, M. (2019). Multidepth: Single-
image depth estimation via multi-task regression and
classification. CoRR, abs/1907.11111.
Liebel, L. and K
¨
orner, M. (2018a). Auxiliary tasks in multi-
task learning.
Liebel, L. and K
¨
orner, M. (2018b). Auxiliary tasks in multi-
task learning.
Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Doll
´
ar, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.
Liu, H., Peng, C., Yu, C., Wang, J., Liu, X., Yu, G., and
Jiang, W. (2019). An end-to-end network for panoptic
segmentation. CoRR, abs/1903.05027.
Liu, S., Johns, E., and Davison, A. J. (2018). End-
to-end multi-task learning with attention. CoRR,
abs/1803.10704.
Long, J., Shelhamer, E., and Darrell, T. (2014). Fully
convolutional networks for semantic segmentation.
CoRR, abs/1411.4038.
Mohan, R. and Valada, A. (2020). Efficientps: Efficient
panoptic segmentation. CoRR, abs/2004.02307.
Park, J., Joo, K., Hu, Z., Liu, C., and Kweon, I. S. (2020).
Non-local spatial propagation network for depth com-
pletion. CoRR, abs/2007.10042.
Petrovai, A. and Nedevschi, S. (2019). Multi-task network
for panoptic segmentation in automated driving. In
2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), pages 2394–2401.
Qiu, J., Cui, Z., Zhang, Y., Zhang, X., Liu, S., Zeng,
B., and Pollefeys, M. (2018). Deeplidar: Deep sur-
face normal guided depth prediction for outdoor scene
from sparse lidar data and single color image. CoRR,
abs/1812.00488.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Ruder, S. (2017). An overview of multi-task learning in
deep neural networks. CoRR, abs/1706.05098.
Schon, M., Buchholz, M., and Dietmayer, K. (2021).
MGNet: Monocular geometric scene understanding
for autonomous driving. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). IEEE.
Sener, O. and Koltun, V. (2018). Multi-task learning as
multi-objective optimization. CoRR, abs/1810.04650.
Tan, M. and Le, Q. V. (2019). Efficientnet: Rethink-
ing model scaling for convolutional neural networks.
CoRR, abs/1905.11946.
Tang, J., Tian, F., Feng, W., Li, J., and Tan, P. (2019). Learn-
ing guided convolutional network for depth comple-
tion. CoRR, abs/1908.01238.
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T.,
and Geiger, A. (2017). Sparsity invariant cnns. CoRR,
abs/1708.06500.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.
Wang, H., Zhu, Y., Adam, H., Yuille, A. L., and Chen, L.
(2020). Max-deeplab: End-to-end panoptic segmenta-
tion with mask transformers. CoRR, abs/2012.00759.
Wang, S., Suo, S., Ma, W.-C., Pokrovsky, A., and Urta-
sun, R. (2018). Deep parametric continuous convolu-
tional neural networks. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition.
Xiong, Y., Liao, R., Zhao, H., Hu, R., Bai, M., Yumer, E.,
and Urtasun, R. (2019). Upsnet: A unified panoptic
segmentation network. CoRR, abs/1901.03784.
Yang, Y., Wong, A., and Soatto, S. (2019). Dense depth
posterior (DDP) from single image and sparse range.
CoRR, abs/1901.10034.
Yuan, H., Li, X., Yang, Y., Cheng, G., Zhang, J., Tong,
Y., Zhang, L., and Tao, D. (2021). Polyphonicformer:
Unified query learning for depth-aware video panoptic
segmentation. CoRR, abs/2112.02582.
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2020).
Deformable DETR: deformable transformers for end-
to-end object detection. CoRR, abs/2010.04159.
Zou, N., Xiang, Z., Chen, Y., Chen, S., and Qiao, C.
(2020a). Simultaneous semantic segmentation and
depth completion with constraint of boundary. Sen-
sors, 20(3).
Zou, N., Xiang, Z., Chen, Y., Chen, S., and Qiao, C.
(2020b). Simultaneous semantic segmentation and
depth completion with constraint of boundary. Sen-
sors, 20(3).
PanDepth: Joint Panoptic Segmentation and Depth Completion
643