(Jiao et al., 2015), Enhanced Evidential KNN (Tra-
belsi et al., 2017) and also evidential decision trees
(Li et al., 2019). These kind of algorithms have been
used for solving several real world problems when it
is about uncertain data. We also have the idea of ex-
tending this model to other tasks like support tickets
classification, and to vocal messages left in the inbox.
REFERENCES
Al-Hawari, F., & Barham, H. (2021). A Machine Learning
based help desk system for IT service management.
Journal of King Saud University-Computer and Infor-
mation Sciences, 33(6), 702-718.
Chiusano, F. (2021). Two minutes NLP – 11 word embed-
dings models you should know. https://medium.com
TF-IDF for Document Ranking from scratch in python on
real world dataset. https://towardsdatascience.com
Pekhimenko, G. (2006). Penalizied logistic regression for
classification. Dept. Comput. Sci.., Univ. Toronto,
Toronto, ON M5S3L1.
Joachims, T. (1998, April). Text categorization with sup-
port vector machines: Learning with many relevant
features. In European conference on Machine Learn-
ing (pp. 137-142). Springer, Berlin, Heidelberg.
Text Classification Examples & How to Put
Them to Work, https://monkeylearn.com/
text-classification-examples/
BERT Explained: A Complete Guide with Theory and Tu-
torial, https://towardsml.wordpress.com/
Khedkar, Sujata, et al. ”Explainable AI in healthcare.”
Healthcare (April 8, 2019). 2nd International Confer-
ence on Advances in Science & Technology (ICAST).
2019.
Krauss, R. M. (2002). The psychology of verbal communi-
cation. International Encyclopaedia of the Social and
Behavioral Sciences. London: Elsevier, 16161-16165.
Gupta, D. K., & Goyal, S. (2018). Email classification
into relevant category using neural networks. arXiv
preprint arXiv:1802.03971.
Mozeti
ˇ
c, I., Gr
ˇ
car, M., & Smailovi
´
c, J. (2016). Multilingual
Twitter sentiment classification: The role of human
annotators. PloS one, 11(5), e0155036.
Bacchelli, A., Dal Sasso, T., D’Ambros, M., & Lanza,
M. (2012, June). Content classification of develop-
ment emails. In 2012 34th International Conference
on Software Engineering (ICSE) (pp. 375-385). IEEE.
Alshehri, Y. A. (2020, March). Text mining for incom-
ing tasks based on the urgency/importance factors and
task classification using Machine Learning tools. In
Proceedings of the 2020 the 4th International Confer-
ence on Compute and Data Analysis (pp. 183-189).
Bacchelli, A., Dal Sasso, T., D’Ambros, M., & Lanza,
M. (2012, June). Content classification of develop-
ment emails. In 2012 34th International Conference
on Software Engineering (ICSE) (pp. 375-385). IEEE.
Oni, A. C., Ogude, U. C.,& Uwadia, C. O. Email Ur-
gency Classifier Using Natural Language Processing
and Na
¨
ıve Bayes. Computer Networks, Infrastructure
Management And Security (CoNIMS), 85.
Trabelsi, A., Elouedi, Z., & Lefevre, E. (2017, July). En-
semble enhanced evidential k-NN classifier through
random subspaces. In European Conference on Sym-
bolic and Quantitative Approaches to Reasoning and
Uncertainty (pp. 212-221). Springer, Cham.
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020).
AI (AI) applications for COVID-19 pandemic. Dia-
betes & Metabolic Syndrome: Clinical Research &
Reviews, 14(4), 337-339.
Choudhari, S., Choudhary, N., Kaware, S., & Shaikh, A.
(2020). Email Prioritization Using Machine Learning.
Available at SSRN 3568518.
Veiga, R. K., Veloso, A. C., Melo, A. P., & LamBERTs, R.
(2021). Application of Machine Learning to estimate
building energy use intensities. Energy and Buildings,
249, 111219.
Sevgican, S., Turan, M., G
¨
okarslan, K., Yilmaz, H. B.,
& Tugcu, T. (2020). Intelligent network data analyt-
ics function in 5G cellular networks using Machine
Learning. Journal of Communications and Networks,
22(3), 269-280.
Mnih, V. (2013). Machine Learning for aerial image label-
ing. University of Toronto (Canada).
Dayhoff, J. E. (1990). Neural network architectures: an in-
troduction. Van Nostrand Reinhold Co..
Li, C., Zhan, G., & Li, Z. (2018, October). News text classi-
fication based on improved Bi-LSTM-CNN. In 2018
9th International conference on information technol-
ogy in medicine and education (ITME) (pp. 890-893).
IEEE.
Kamiyama, H., Ando, A., Masumura, R., Kobashikawa,
S., & Aono, Y. (2019, November). Urgent Voicemail
Detection Focused on Long-term Temporal Variation.
In 2019 Asia-Pacific Signal and Information Process-
ing Association Annual Summit and Conference (AP-
SIPA ASC) (pp. 917-921). IEEE.
Tripepi, G., Jager, K. J., Dekker, F. W., & Zoccali, C.
(2008). Linear and logistic regression analysis. Kid-
ney international, 73(7), 806-810.
Asaei, A., Bourlard, H., & Picart, B. (2010). Investi-
gation of kNN classifier on posterior features to-
wards application in automatic speech recognition
(No. REP
WORK). Idiap.
Dopico, M., G
´
omez, A., De la Fuente, D., Garc
´
ıa, N.,
Rosillo, R., & Puche, J. (2016). A vision of indus-
try 4.0 from an AI point of view. In Proceedings on
the international conference on AI (ICAI) (p. 407).
The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Ap-
plied Computing (WorldComp).
Cheng, C. T., Chen, C. C., Fu, C. Y., Chaou, C. H., Wu, Y.
T., Hsu, C. P., ... & Liao, C. H. (2020). AI-based ed-
ucation assists medical students’ interpretation of hip
fracture. Insights into Imaging, 11(1), 1-8.
Cayamcela, M. E. M., & Lim, W. (2018, October). AI in 5G
technology: A survey. In 2018 International Confer-
ence on Information and Communication Technology
Convergence (ICTC) (pp. 860-865). IEEE.
Voicemail Urgency Detection Using Context Dependent and Independent NLP Techniques
455