Fasser, M. ., Jokeit, M., Kalthoff, M., Gomez Romero,
D. A., Trache, T., Snedeker, J. G., Farshad, M.,
and Widmer, J. (2021). Subject-specific alignment
and mass distribution in musculoskeletal models of
the lumbar spine. Frontiers in Bioengineering and
Biotechnology, 9. Cited By :2.
Fukuda, N., Otake, Y., Takao, M., Yokota, F., Ogawa, T.,
Uemura, K., Nakaya, R., Tamura, K., Grupp, R., Far-
vardin, A., Sugano, N., and Sato, Y. (2017). Estima-
tion of attachment regions of hip muscles in ct im-
age using muscle attachment probabilistic atlas con-
structed from measurements in eight cadavers. Inter-
national Journal of Computer Assisted Radiology and
Surgery, 12.
Georgii, J. and Westermann, R. (2005). Mass-spring sys-
tems on the gpu. Simulation Modelling Practice and
Theory, 13:693–702.
Green, S. (2010). Particle simulation using cuda. In Particle
Simulation using CUDA.
Havlicek, O., Cervenka, M., and Kohout, J. (2022). Colli-
sion detection and response approaches for computer
muscle modelling. accepted for the IEEE 16th Inter-
national Scientific Conference on Informatics.
Hill, A. (1938). The heat of shortening and the dynamic
constants of muscle. Proc. R. Soc. Lond. B, 126:612–
745.
Jan
´
ak, T. (2012). Fast soft-body models for musculoskele-
tal modelling. Technical report, University of West
Bohemia, Faculty of Applied Sciences.
Kohout, J. and
ˇ
Cervenka, M. (2021). Muscle deformation
using position based dynamics. In Ye, X., Soares,
F., De Maria, E., G
´
omez Vilda, P., Cabitza, F., Fred,
A., and Gamboa, H., editors, Biomedical Engineer-
ing Systems and Technologies, pages 486–509, Cham.
Springer International Publishing.
Koschier, D. and Bender, J. (2017). Density maps for im-
proved sph boundary handling. In Proceedings of
the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, SCA ’17, New York, NY, USA.
Association for Computing Machinery.
Lee, D., Li, Z., Sohail, Q. Z., Jackson, K., Fiume, E., and
Agur, A. (2014). A three-dimensional approach to
pennation angle estimation for human skeletal mus-
cle. Computer methods in biomechanics and biomed-
ical engineering, 18:1–11.
Li, H., Sumner, R., and Pauly, M. (2008). Global correspon-
dence optimization for non-rigid registration of depth
scans. Computer Graphics Forum, 27.
Macklin, M., M
¨
uller, M., and Chentanez, N. (2016). Xpbd:
Position-based simulation of compliant constrained
dynamics. In Proceedings of the 9th International
Conference on Motion in Games, MIG ’16, page
49–54, New York, NY, USA. Association for Com-
puting Machinery.
Majdisova, Z. and Skala, V. (2017). Radial basis function
approximations: comparison and applications. Ap-
plied Mathematical Modelling, 51:728–743.
Modenese, L. and Kohout, J. (2020). Automated generation
of three-dimensional complex muscle geometries for
use in personalised musculoskeletal models. Annals
of Biomedical Engineering, 48.
M
¨
uller, M., Heidelberger, B., Hennix, M., and Ratcliff,
J. (2007). Position based dynamics. Journal of
Visual Communication and Image Representation,
18(2):109–118.
Oatis, C. A. (2017). Biomechanics of skeletal muscle. Lip-
pincott Williams & Wilkins.
Romeo, M., Monteagudo, C., and S
´
anchez-Quir
´
os, D.
(2018). Muscle Simulation with Extended Position
Based Dynamics. In Garc
´
ıa-Fern
´
andez, I. and Ure
˜
na,
C., editors, Spanish Computer Graphics Conference
(CEIG). The Eurographics Association.
Skala, V. and Cervenka, M. (2019). Novel rbf approxima-
tion method based on geometrical properties for sig-
nal processing with a new rbf function: Experimental
comparison. In 2019 IEEE 15th International Scien-
tific Conference on Informatics.
Sorkine, O. and Alexa, M. (2007). As-Rigid-As-Possible
Surface Modeling. In Belyaev, A. and Garland, M.,
editors, Geometry Processing. The Eurographics As-
sociation.
Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann,
G., Raghupathi, L., Fuhrman, A., Cani, M.-P., Faure,
F., Magnenat-Thalmann, N., Strasser, W., and Volino,
P. (2005). Collision Detection for Deformable Ob-
jects. Computer Graphics Forum.
Turk, G. (1990). Interactive collision detection for molec-
ular graphics. Technical report, University of North
Carolina at Chapel Hill, USA.
Wade, S., Strader, C., Fitzpatrick, L., Anthony, M., and
O’Malley, C. (2014). Estimating prevalence of os-
teoporosis: Examples from industrialized countries.
Archives of osteoporosis, 9:182.
Wang, B., Matcuk, G., and Barbi
ˇ
c, J. (2021). Modeling
of personalized anatomy using plastic strains. ACM
Trans. Graph., 40(2).
Zhang, G., Wang, C., Liu, Q., Wei, J., Luo, C., Duan, L.,
Long, J., Zhang, X., and Wang, G. (2021). Develop-
ment of skeletal muscle model for bridge-style move-
ment rehabilitation. Journal of Physics: Conference
Series, 2026:012061.
Zhang, S.-X., Heng, P.-A., Liu, Z.-J., Tan, L.-W., Qiu, M.-
G., Li, Q.-Y., Liao, R.-X., Li, K., Cui, G.-Y., Guo,
Y.-L., Yang, X.-P., Liu, G.-J., Shan, J.-L., Liu, J.-J.,
Zhang, W.-G., Chen, X.-H., Chen, J.-H., Wang, J.,
Chen, W., Lu, M., You, J., Pang, X.-L., Xiao, H., Xie,
Y.-M., and Cheng, J. C.-Y. (2004). The chinese vis-
ible human (cvh) datasets incorporate technical and
imaging advances on earlier digital humans. Journal
of Anatomy, 204(3):165–173.
Zhao, Y., Clapworthy, G., Kohout, J., Dong, F., Tao, Y.,
Wei, S., and Mcfarlane, N. (2013). Laplacian muscu-
loskeletal deformation for patient-specific simulation
and visualisation. In 2013 17th International Confer-
ence on Information Visualisation, pages 505–510.
Computerised Muscle Modelling and Simulation for Interactive Applications
221