G
´
eron, A. (2019). M
˜
aos
`
a Obra: Aprendizado de M
´
aquina
com Scikit-Learn & TensorFlow. Alta Books, Rio de
Janeiro.
Ghosh, S., L
¨
ochner, J., Mitra, B., and De, P. (2022). Your
smartphone knows you better than you may think:
Emotional assessment ‘on the go’via tapsense. Quan-
tifying Quality of Life: Incorporating Daily Life into
Medicine, page 209.
Gjoreski, M., Mahesh, B., Kolenik, T., Uwe-Garbas, J.,
Seuss, D., Gjoreski, H., Lu
ˇ
strek, M., Gams, M., and
Pejovi
´
c, V. (2021). Cognitive load monitoring with
wearables–lessons learned from a machine learning
challenge. IEEE Access, 9:103325–103336.
Hao, T., Walter, K. N., Ball, M. J., Chang, H.-Y., Sun, S.,
and Zhu, X. (2017). Stresshacker: towards practical
stress monitoring in the wild with smartwatches. In
AMIA Annual Symposium Proceedings, volume 2017,
page 830. American Medical Informatics Association.
Ian, H. W. and Eibe, F. (2005). Data mining: Practical ma-
chine learning tools and techniques.
Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., and
Kwak, K.-S. (2015). The internet of things for health
care: a comprehensive survey. IEEE access, 3:678–
708.
Junior, E. C., de Castro Andrade, R. M., and Rocha, L. S.
(2021). Development process for self-adaptive appli-
cations of the internet of health things based on move-
ment patterns. In 9th International Conference on
Healthcare Informatics (ICHI), pages 437–438. IEEE.
Karimi, M. and Brazier, J. (2016). Health, health-related
quality of life, and quality of life: what is the differ-
ence? Pharmacoeconomics, 34(7):645–649.
L’Hommedieu, M., L’Hommedieu, J., Begay, C., Schenone,
A., Dimitropoulou, L., Margolin, G., Falk, T., Ferrara,
E., Lerman, K., Narayanan, S., et al. (2019). Lessons
learned: Recommendations for implementing a longi-
tudinal study using wearable and environmental sen-
sors in a health care organization. JMIR mHealth and
uHealth, 7(12):e13305.
Oliveira, P., Costa Junior, E., Santos, I. D. S., Andrade, R.,
and Santos Neto, P. d. A. (2022a). Ten years of ehealth
discussions on stack overflow. International Confer-
ence on Health Informatics (HEALTHINF1’22).
Oliveira, P. A. M., Andrade, R. M. C., Neto, P. S. N., and
Oliveira, B. S. (2022b). Internet of health things for
quality of life: Open challenges based on a systematic
literature mapping. In 15th International Conference
on Health Informatics (HEALTHINF). INSTICC.
Oliveira, P. A. M., Andrade, R. M. C., Neto, P. S. N., and
Oliveira, B. S. (2022c). Towards an ioht platform to
monitor qol indicators. In 15th International Con-
ference on Health Informatics (HEALTHINF). IN-
STICC.
Orley, J. and Kuyken, W. (1994). The development of
the world health organization quality of life assess-
ment instrument (the whoqol). In Quality of life as-
sessment: International perspectives, pages 41–57.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Palos-Sanchez, P. R., Saura, J. R., Martin, M.
´
A. R.,
and Aguayo-Camacho, M. (2021). Toward a bet-
ter understanding of the intention to use mhealth
apps: Exploratory study. JMIR mHealth and uHealth,
9(9):e27021.
Paul, A., Mukherjee, D. P., Das, P., Gangopadhyay, A.,
Chintha, A. R., and Kundu, S. (2018). Improved ran-
dom forest for classification. IEEE Transactions on
Image Processing, 27(8):4012–4024.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Purtova, N., Kosta, E., and Koops, B.-J. (2015). Laws and
regulations for digital health. In Requirements Engi-
neering for Digital Health, pages 47–74. Springer.
Qudah, B. and Luetsch, K. (2019). The influence of mo-
bile health applications on patient-healthcare provider
relationships: a systematic, narrative review. Patient
education and counseling, 102(6):1080–1089.
Rodrigues, J. J., Segundo, D. B. D. R., Junqueira, H. A.,
Sabino, M. H., Prince, R. M., Al-Muhtadi, J., and
De Albuquerque, V. H. C. (2018). Enabling tech-
nologies for the internet of health things. Ieee Access,
6:13129–13141.
Sanchez, W., Martinez, A., Campos, W., Estrada, H., and
Pelechano, V. (2015). Inferring loneliness levels in
older adults from smartphones. Journal of Ambient
Intelligence and Smart Environments, 7(1):85–98.
Sneha, S. and Asha, P. (2017). Privacy preserving on
e-health records based on anonymization technique.
Global Journal of Pure and Applied Mathematics,
13(7):3367–3380.
Tanaka, K., Monden, A., and Zeynep, Y. (2019). Effective-
ness of auto-sklearn in software bug prediction. Com-
puter Software, 36(4):46–52.
Van Teijlingen, E., Hundley, V., et al. (2010). The im-
portance of pilot studies. Social research update,
35(4):49–59.
Varshney, U. (2014). Mobile health: Four emerging themes
of research. Decision Support Systems, 66:20–35.
Venkatesh, V. and Bala, H. (2008). Technology acceptance
model 3 and a research agenda on interventions. De-
cision sciences, 39(2):273–315.
Wang, Z., Xiong, H., Zhang, J., Yang, S., Boukhechba, M.,
Zhang, D., Barnes, L. E., and Dou, D. (2022). From
personalized medicine to population health: A sur-
vey of mhealth sensing techniques. IEEE Internet of
Things.
Wohlin, C., Runeson, P., H
¨
ost, M., Ohlsson, M. C., Reg-
nell, B., and Wessl
´
en, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.
HEALTHINF 2023 - 16th International Conference on Health Informatics
166