4  CONCLUSIONS 
In  this  study,  we  have  described  the  GediNETPro 
based on four components: the three components G, 
S,  and  M,  inherited  from  GediNET  with  a  new 
component, P. The new component P detect clusters 
or  patterns  of  disease  groups  based  on  their  rank 
values assigned by the S component. A new cluster-
score  is  computed  to  detect  the  most  significant 
cluster of groups. Traditional approaches mainly use 
CV or other cross-validation techniques to evaluate 
performance measurements. However, GediNETPro 
utilizes the ranks or scores all over the iterations to be 
used in the P component to detect hidden patterns of 
the group's ranks. We hypothesize that disease groups 
that  share  the  same  cluster  might  have  similar 
biological  functions.  This  should  be  validated  as 
future  work.  Using  heatmaps  to  visualize  the  data 
allowed us to detect patterns that would shed light on 
additional biological knowledge of the output. 
ACKNOWLEDGEMENTS 
The work of M.Y. has been supported by the Zefat 
Academic College. 
REFERENCES 
Aiello, S., Click, C., Roark, H., Rehak, L., & Lanford, J. 
(n.d.). Machine Learning with Python and H2O. 
Babbi, G., Martelli, P. L., Profiti, G., Bovo, S., Savojardo, 
C.,  &  Casadio,  R.  (2017).  eDGAR:  A  database  of 
Disease-Gene  Associations  with  annotated 
Relationships  among  genes.  BMC Genomics,  18(5), 
554. https://doi.org/10.1186/s12864-017-3911-3 
Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, 
T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, 
B. (2008). KNIME: The Konstanz Information Miner. 
In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R. 
Decker (Eds.), Data Analysis, Machine Learning and 
Applications  (pp.  319–326).  Springer. 
https://doi.org/10.1007/978-3-540-78246-9_38 
Hamosh,  A.,  Scott,  A.  F.,  Amberger,  J.,  Valle,  D.,  & 
McKusick, V. A. (2000). Online Mendelian Inheritance 
in Man (OMIM). Human Mutation,  15(1),  57–61. 
https://doi.org/10.1002/(SICI)1098-
1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G 
Kolde, R., Laur, S., Adler, P., &  Vilo,  J.  (2012).  Robust 
rank  aggregation  for  gene  list  integration  and  meta-
analysis.  Bioinformatics,  28(4),  573–580. 
https://doi.org/10.1093/bioinformatics/btr709 
Missori, G., Serra, F., Prestigiacomo, G., Ricciardolo, A. 
A., Brugioni, L., & Gelmini, R. (2020). Case Report: 
Metastatic  breast  cancer  to  the  gallbladder. 
F1000Research, 9, 343. https://doi.org/10.12688/f1000 
research.23469.1 
Piñero,  J.,  Bravo,  À.,  Queralt-Rosinach,  N.,  Gutiérrez-
Sacristán, A., Deu-Pons, J., Centeno, E., García-García, 
J.,  Sanz,  F.,  &  Furlong,  L.  I.  (2017).  DisGeNET:  A 
comprehensive  platform  integrating  information  on 
human disease-associated genes and variants. Nucleic 
Acids Research,  45(D1),  D833–D839. 
https://doi.org/10.1093/nar/gkw943 
Qumsiyeh, E., Showe, L., & Yousef, M. (2022). GediNET 
for discovering gene associations across diseases using 
knowledge based machine learning approach. Scientific 
Reports,  12(1),  Article  1.  https://doi.org/10.1038/ 
s41598-022-24421-0 
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). 
edgeR:  A  Bioconductor  package  for  differential 
expression  analysis  of  digital  gene  expression  data. 
Bioinformatics (Oxford, England),  26(1),  139–140. 
https://doi.org/10.1093/bioinformatics/btp616 
Suratanee,  A.,  &  Plaimas,  K.  (2015).  DDA:  A  Novel 
Network-Based  Scoring  Method  to  Identify  Disease-
Disease  Associations.  Bioinformatics and Biology 
Insights,  9,  BBI.S35237.  https://doi.org/10.4137/BB 
I.S35237 
Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). 
The Cancer Genome Atlas (TCGA): An immeasurable 
source  of  knowledge.  Contemporary Oncology, 
19(1A), A68–A77. https://doi.org/10.5114/wo.2014.47 
136 
Wong,  T.-T.  (2015).  Performance  evaluation  of 
classification  algorithms  by  k-fold  and  leave-one-out 
cross  validation.  Pattern Recognition,  48(9),  2839–
2846. https://doi.org/10.1016/j.patcog.2015.03.009 
Xu,  Q.-S.,  &  Liang,  Y.-Z.  (2001).  Monte  Carlo  cross 
validation.  Chemometrics and Intelligent Laboratory 
Systems,  56(1),  1–11.  https://doi.org/10.1016/S0169-
7439(00)00122-2 
Yousef,  M.,  Abdallah,  L.,  &  Allmer,  J.  (2019).  maTE: 
Discovering  expressed  interactions  between 
microRNAs and  their  targets.  Bioinformatics, 35(20), 
4020–4028. 
https://doi.org/10.1093/bioinformatics/btz204 
Yousef,  M.,  Bakir-Gungor,  B.,  Jabeer,  A.,  Goy,  G., 
Qureshi, R., & C Showe, L. (2020). Recursive Cluster 
Elimination  based  Rank  Function  (SVM-RCE-R) 
implemented  in  KNIME.  F1000Research,  9,  1255. 
https://doi.org/10.12688/f1000research.26880.2 
Yousef,  M.,  Goy,  G.,  &  Bakir-Gungor,  B.  (2022). 
miRModuleNet: Detecting miRNA-mRNA Regulatory 
Modules.  Frontiers in Genetics,  13,  767455. 
https://doi.org/10.3389/fgene.2022.767455 
Yousef, M., Goy, G., Mitra, R., Eischen, C. M., Jabeer, A., 
&  Bakir-Gungor,  B.  (2021).  miRcorrNet:  Machine 
learning-based  integration  of  miRNA  and  mRNA 
expression  profiles,  combined  with  feature  grouping 
and  ranking.  PeerJ,  9,  e11458.  https://doi.org/ 
10.7717/peerj.11458 
Yousef, M., Jabeer, A., & Bakir-Gungor, B. (2021). SVM-
RCE-R-OPT:  Optimization  of  Scoring  Function  for 
SVM-RCE-R. In  G. Kotsis, A. M. Tjoa, I. Khalil, B.