4 CONCLUSIONS
In this study, we have described the GediNETPro
based on four components: the three components G,
S, and M, inherited from GediNET with a new
component, P. The new component P detect clusters
or patterns of disease groups based on their rank
values assigned by the S component. A new cluster-
score is computed to detect the most significant
cluster of groups. Traditional approaches mainly use
CV or other cross-validation techniques to evaluate
performance measurements. However, GediNETPro
utilizes the ranks or scores all over the iterations to be
used in the P component to detect hidden patterns of
the group's ranks. We hypothesize that disease groups
that share the same cluster might have similar
biological functions. This should be validated as
future work. Using heatmaps to visualize the data
allowed us to detect patterns that would shed light on
additional biological knowledge of the output.
ACKNOWLEDGEMENTS
The work of M.Y. has been supported by the Zefat
Academic College.
REFERENCES
Aiello, S., Click, C., Roark, H., Rehak, L., & Lanford, J.
(n.d.). Machine Learning with Python and H2O.
Babbi, G., Martelli, P. L., Profiti, G., Bovo, S., Savojardo,
C., & Casadio, R. (2017). eDGAR: A database of
Disease-Gene Associations with annotated
Relationships among genes. BMC Genomics, 18(5),
554. https://doi.org/10.1186/s12864-017-3911-3
Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter,
T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel,
B. (2008). KNIME: The Konstanz Information Miner.
In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R.
Decker (Eds.), Data Analysis, Machine Learning and
Applications (pp. 319–326). Springer.
https://doi.org/10.1007/978-3-540-78246-9_38
Hamosh, A., Scott, A. F., Amberger, J., Valle, D., &
McKusick, V. A. (2000). Online Mendelian Inheritance
in Man (OMIM). Human Mutation, 15(1), 57–61.
https://doi.org/10.1002/(SICI)1098-
1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
Kolde, R., Laur, S., Adler, P., & Vilo, J. (2012). Robust
rank aggregation for gene list integration and meta-
analysis. Bioinformatics, 28(4), 573–580.
https://doi.org/10.1093/bioinformatics/btr709
Missori, G., Serra, F., Prestigiacomo, G., Ricciardolo, A.
A., Brugioni, L., & Gelmini, R. (2020). Case Report:
Metastatic breast cancer to the gallbladder.
F1000Research, 9, 343. https://doi.org/10.12688/f1000
research.23469.1
Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-
Sacristán, A., Deu-Pons, J., Centeno, E., García-García,
J., Sanz, F., & Furlong, L. I. (2017). DisGeNET: A
comprehensive platform integrating information on
human disease-associated genes and variants. Nucleic
Acids Research, 45(D1), D833–D839.
https://doi.org/10.1093/nar/gkw943
Qumsiyeh, E., Showe, L., & Yousef, M. (2022). GediNET
for discovering gene associations across diseases using
knowledge based machine learning approach. Scientific
Reports, 12(1), Article 1. https://doi.org/10.1038/
s41598-022-24421-0
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010).
edgeR: A Bioconductor package for differential
expression analysis of digital gene expression data.
Bioinformatics (Oxford, England), 26(1), 139–140.
https://doi.org/10.1093/bioinformatics/btp616
Suratanee, A., & Plaimas, K. (2015). DDA: A Novel
Network-Based Scoring Method to Identify Disease-
Disease Associations. Bioinformatics and Biology
Insights, 9, BBI.S35237. https://doi.org/10.4137/BB
I.S35237
Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015).
The Cancer Genome Atlas (TCGA): An immeasurable
source of knowledge. Contemporary Oncology,
19(1A), A68–A77. https://doi.org/10.5114/wo.2014.47
136
Wong, T.-T. (2015). Performance evaluation of
classification algorithms by k-fold and leave-one-out
cross validation. Pattern Recognition, 48(9), 2839–
2846. https://doi.org/10.1016/j.patcog.2015.03.009
Xu, Q.-S., & Liang, Y.-Z. (2001). Monte Carlo cross
validation. Chemometrics and Intelligent Laboratory
Systems, 56(1), 1–11. https://doi.org/10.1016/S0169-
7439(00)00122-2
Yousef, M., Abdallah, L., & Allmer, J. (2019). maTE:
Discovering expressed interactions between
microRNAs and their targets. Bioinformatics, 35(20),
4020–4028.
https://doi.org/10.1093/bioinformatics/btz204
Yousef, M., Bakir-Gungor, B., Jabeer, A., Goy, G.,
Qureshi, R., & C Showe, L. (2020). Recursive Cluster
Elimination based Rank Function (SVM-RCE-R)
implemented in KNIME. F1000Research, 9, 1255.
https://doi.org/10.12688/f1000research.26880.2
Yousef, M., Goy, G., & Bakir-Gungor, B. (2022).
miRModuleNet: Detecting miRNA-mRNA Regulatory
Modules. Frontiers in Genetics, 13, 767455.
https://doi.org/10.3389/fgene.2022.767455
Yousef, M., Goy, G., Mitra, R., Eischen, C. M., Jabeer, A.,
& Bakir-Gungor, B. (2021). miRcorrNet: Machine
learning-based integration of miRNA and mRNA
expression profiles, combined with feature grouping
and ranking. PeerJ, 9, e11458. https://doi.org/
10.7717/peerj.11458
Yousef, M., Jabeer, A., & Bakir-Gungor, B. (2021). SVM-
RCE-R-OPT: Optimization of Scoring Function for
SVM-RCE-R. In G. Kotsis, A. M. Tjoa, I. Khalil, B.