Table 1: Table on the quantified key performance indices for some of our modules we have researched by now.
Module KPIs
Model Predictive Control
Mean lateral error in curves Mean lateral error on straight section
0.9 [m] 0.1 [m]
System Delays
Mean steering delay Mean engine RPM delay
200 [ms] 100 [ms]
Mission Planning (SHOP3)
Idle-time [min] of fleet after 8 hours in simulation
Senario Name Number of vehicles simulated Strategy 1 Strategy 2 Strategy 3 Strategy 4
Simulation Scenario 1 75 25782 26096 26046 25938
Simulation Scenario 2 40 2093 5343 3512 3084
Overall hauled ressources [t]
Scenario Name Number of vehicles simulated Strategy 1 Strategy 2 Strategy 3 Strategy 4
Simulation Scenario 1 75 18550 18550 18550 18550
Simulation Scenario 2 40 13865 12685 13080 10305
Object Detection
Model mAP@0.5 Person mAP@0.5 Wheel-dumper mAP@0.5 Car mAP@0.5 Beacon Detection Frequency [hz]
PointPillar (3D)* 0.34 0.4 0.4 - 20
YOLOv5m (2D) 0.994 0.978 - 0.966 30
033R126CN.
REFERENCES
Aeberhard, M. (2015). Automated Driving with ROS at
BMW. In ROSCon Hamburg.
Batterham, R. (2017). The mine of the future – even more
sustainable. Minerals Engineering, 107:2–7. Sustain-
able Minerals.
Bhattacharya, P. and Gavrilova, M. L. (2007). Voronoi di-
agram in optimal path planning. In 4th International
Symposium on Voronoi Diagrams in Science and En-
gineering (ISVD 2007), pages 38–47.
Chajan, E., Schulte-Tigges, J., Reke, M., Ferrein, A., Math-
eis, D., and Walter, T. (2021). Gpu based model-
predictive path control for self-driving vehicles. In
2021 IEEE Intelligent Vehicles Symposium (IV), pages
1243–1248.
Clausen, E. and Sörensen, A. (2022). Required and desired:
breakthroughs for future-proofing mineral and metal
extraction. Mineral Economics, 35(3):521–537.
Delrobaei, M. and McIsaac, K. A. (2011). Design and steer-
ing control of a center-articulated mobile robot mod-
ule. Journal of Robotics, 2011.
Donner, R., Rabel, M., Scholl, I., Ferrein, A., Donner,
M., Geier, A., John, A., Köhler, C., and Varga, S.
(2019). Die Extraktion bergbaulich relevanter Merk-
male aus 3D-Punktwolken eines untertagetauglichen
mobilen Multisensorsystems.
Ferrein, A., Scholl, I., Neumann, T., Krückel, K., and Schif-
fer, S. (2019). A System for Continuous Underground
Site Mapping and Exploration. In Reyhanoglu, M.
and Cubber, G. D., editors, Unmanned Robotic Sys-
tems and Applications, chapter 4. IntechOpen, Rijeka.
Goldman, R. P. and Kuter, U. (2019). Hierarchical task net-
work planning in common lisp: the case of shop3. In
ELS, pages 73–80.
Lang, D., Friedmann, S., Häselich, M., and Paulus, D.
(2014). Definition of semantic maps for outdoor
robotic tasks. In 2014 IEEE International Conference
on Robotics and Biomimetics (ROBIO 2014), pages
2547–2552.
Limpert, N., Schiffer, S., and Ferrein, A. (2015). A local
planner for ackermann-driven vehicles in ros sbpl. In
2015 Pattern Recognition Association of South Africa
and Robotics and Mechatronics International Confer-
ence (PRASA-RobMech), pages 172–177. IEEE.
Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and
Woodall, W. (2022). Robot operating system 2: De-
sign, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074.
Macenski, S., Martin, F., White, R., and Ginés Clavero, J.
(2020). The marathon 2: A navigation system. In
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).
Maruyama, Y., Kato, S., and Azumi, T. (2016). Ex-
ploring the performance of ros2. In Proceedings of
the 13th International Conference on Embedded Soft-
ware, pages 1–10.
Moore, T. and Stouch, D. (2014). A generalized extended
kalman filter implementation for the robot operating
system. In Proceedings of the 13th International Con-
ference on Intelligent Autonomous Systems (IAS-13).
Springer.
Mühlens, L. (2021). A Behaviour Engine for an Au-
tonomous Mining Vehicle in ROS. Bachelor’s thesis,
FH Aachen University of Applied Sciences.
Musin, O. R. (1997). Properties of the delaunay triangula-
tion. In Proceedings of the thirteenth annual sympo-
sium on Computational geometry, pages 424–426.
Nikolovski, G., Reke, M., Elsen, I., and Schiffer, S. (2021).
Machine learning based 3D object detection for navi-
gation in unstructured environments. In IEEE Intelli-
gent Vehicles Symposium Workshops, IV 2021, pages
236–242. IEEE.
Petty, J. (2017). Getting the best out of autonomous mining
fleets. AusIMM Bulletin, (Dec 2017):58–62.
Pingel, T. J., Clarke, K. C., and McBride, W. A. (2013). An
improved simple morphological filter for the terrain
classification of airborne lidar data. ISPRS Journal of
Photogrammetry and Remote Sensing, 77:21–30.
Pivtoraiko, M., Knepper, R. A., and Kelly, A. (2007). Op-
timal, smooth, nonholonomic mobile robot motion
planning in state lattices. Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU-
RI-TR-07-15.
Poggenhans, F., Pauls, J.-H., Janosovits, J., Orf, S., Nau-
mann, M., Kuhnt, F., and Mayr, M. (2018a). Lanelet2:
A high-definition map framework for the future of
Towards a Fleet of Autonomous Haul-Dump Vehicles in Hybrid Mines
287