neural framework for image-based human appearance
transfer. Multimedia Tools and Applications, 1-28.
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey,
B.: Adversarial autoencoders. arXiv preprint
arXiv:1511.05644. (2015)
Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A.
(2019, May). Self-attention generative adversarial
networks. In International conference on machine
learning (pp. 7354-7363). PMLR.
Karras, T., Laine, S., & Aila, T. (2019). A style-based
generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 4401-
4410).
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-
to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1125-
1134).
Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., &
Catanzaro, B. (2018). High-resolution image synthesis
and semantic manipulation with conditional gans.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 8798-8807).
Wang, Z., Zhao, L., Lin, S., Mo, Q., Zhang, H., Xing, W.,
& Lu, D. (2020). GLStyleNet: exquisite style transfer
combining global and local pyramid features. IET
Computer Vision, 14(8), 575-586.
Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019).
Semantic image synthesis with spatially-adaptive
normalization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern
recognition (pp. 2337-2346).
Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image
style transfer using convolutional neural networks.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2414-2423).
Li, X., Liu, S., Kautz, J., & Yang, M. H. (2019). Learning
linear transformations for fast image and video style
transfer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp.
3809-3817).
Yao, Y., Ren, J., Xie, X., Liu, W., Liu, Y. J., & Wang, J.
(2019). Attention-aware multi-stroke style transfer.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 1467-
1475).
Luan, F., Paris, S., Shechtman, E., & Bala, K. (2017). Deep
photo style transfer. In Proceedings of the IEEE
conference on computer vision and pattern
recognition (pp. 4990-4998).
Liu, S., Lin, T., He, D., Li, F., Wang, M., Li, X., & Ding,
E. (2021). Adaattn: Revisit attention mechanism in
arbitrary neural style transfer. In Proceedings of the
IEEE/CVF international conference on computer
vision (pp. 6649-6658).
Cheng, M. M., Liu, X. C., Wang, J., Lu, S. P., Lai, Y. K., &
Rosin, P. L. (2019). Structure-preserving neural style
transfer. IEEE Transactions on Image Processing, 29,
909-920.
Raj, A., Sangkloy, P., Chang, H., Lu, J., Ceylan, D., &
Hays, J. (2018). Swapnet: Garment transfer in single
view images. In Proceedings of the European
conference on computer vision (ECCV) (pp. 666-682).
Liang, X., Gong, K., Shen, X., & Lin, L. (2018). Look into
person: Joint body parsing & pose estimation network
and a new benchmark. IEEE transactions on pattern
analysis and machine intelligence, 41(4), 871-885.
Gong, K., Gao, Y., Liang, X., Shen, X., Wang, M., & Lin,
L. (2019). Graphonomy: Universal human parsing via
graph transfer learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 7450-7459).
Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., &
Schiele, B. (2018, September). Neural body fitting:
Unifying deep learning and model based human pose
and shape estimation. In 2018 international conference
on 3D vision (3DV) (pp. 484-494). IEEE.
Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M. J.,
& Gehler, P. V. (2017). Unite the people: Closing the
loop between 3d and 2d human representations.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 6050-6059).
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:
Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted
intervention (pp. 234-241). Springer, Cham.
Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., & Chen, X. (2016). Improved techniques
for training gans. Advances in neural information
processing systems, 29.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: from error visibility
to structural similarity. IEEE transactions on image
processing, 13(4), 600-612.
Siarohin, A., Sangineto, E., Lathuiliere, S., & Sebe, N.
(2018). Deformable gans for pose-based human image
generation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 3408-
3416).
Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., & Van
Gool, L. (2017). Pose guided person image
generation. Advances in neural information processing
systems, 30.
Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B.,
& Fritz, M. (2018). Disentangled person image
generation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 99-
108).
Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., & Bai, X.
(2019). Progressive pose attention transfer for person
image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (pp. 2347-2356).
Liu, Z., Luo, P., Qiu, S., Wang, X., & Tang, X. (2016).
Deepfashion: Powering robust clothes recognition and