Barandas, M., Folgado, D., Fernandes, L., Santos, S.,
Abreu, M., Bota, P., Liu, H., Schultz, T., and Gam-
boa, H. (2020). Tsfel: Time series feature extraction
library. SoftwareX, 11:100456.
Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of Machine
Learning Research, 13(10):281–305.
Boersma, P. (2001). Praat, a system for doing phonetics by
computer. Glot International, 5:341–345.
Boghdady, N. E., Langner, F., Gaudrain, E., Bas¸kent, D.,
and Nogueira, W. (2021). Effect of spectral contrast
enhancement on speech-on-speech intelligibility and
voice cue sensitivity in cochlear implant users. Ear &
Hearing, 42:271–289.
Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthana-
sombat, A., Spathis, D., Xia, T., Cicuta, P., and Mas-
colo, C. (2020). Exploring automatic diagnosis of
covid-19 from crowdsourced respiratory sound data.
pages 3474–3484. ACM.
de Almeida, S. C., Mendes, A. P., and Kempster, G. B.
(2019). The consensus auditory-perceptual evaluation
of voice (cape-v) psychometric characteristics: Ii eu-
ropean portuguese version (ii ep cape-v). Journal of
Voice, 33:582.e5–582.e13.
Delgado-Hern
´
andez, J., Le
´
on-G
´
omez, N. M., Izquierdo-
Arteaga, L. M., and Llanos-Fumero, Y. (2018).
An
´
alisis cepstral de la voz normal y patol
´
ogica en
adultos espa
˜
noles. medida de la prominencia del pico
cepstral suavizado en vocales sostenidas versus habla
conectada. Acta Otorrinolaringol
´
ogica Espa
˜
nola,
69:134–140.
Fernandes, F., Barbalho, I., Barros, D., Valentim, R., Teix-
eira, C., Henriques, J., Gil, P., and J
´
unior, M. D.
(2021). Biomedical signals and machine learning in
amyotrophic lateral sclerosis: a systematic review.
BioMedical Engineering OnLine, 20:61.
Garnerin, M., Rossato, S., and Besacier, L. (2019). Gen-
der representation in french broadcast corpora and its
impact on asr performance. pages 3–9. ACM Press.
G
´
omez-Vilda, P., Londral, A. R. M., Ferr
´
andez-Vicente,
J. M., and Rodellar-Biarge, V. (2013). Characteri-
zation of speech from amyotrophic lateral sclerosis
by neuromorphic processing. In Ferr
´
andez Vicente,
J. M.,
´
Alvarez S
´
anchez, J. R., de la Paz L
´
opez, F.,
and Toledo Moreo, F. J., editors, Natural and Artificial
Models in Computation and Biology, pages 212–224,
Berlin, Heidelberg. Springer Berlin Heidelberg.
G
´
eron, A. (2019). Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow, 2nd Edition. O’Reilly
Media, Inc.
G
´
omez-Vilda, P., Londral, A. R. M., Rodellar-Biarge, V.,
Ferr
´
andez-Vicente, J. M., and de Carvalho, M. (2015).
Monitoring amyotrophic lateral sclerosis by biome-
chanical modeling of speech production. Neurocom-
puting, 151:130–138.
Jadoul, Y., Thompson, B., and de Boer, B. (2018). Introduc-
ing parselmouth: A python interface to praat. Journal
of Phonetics, 71:1–15.
Janbakhshi, P. and Kodrasi, I. (2021). Supervised speech
representation learning for parkinson’s disease classi-
fication. In Speech Communication; 14th ITG Confer-
ence, pages 1–5.
Ko, J. H., Fromm, J., Philipose, M., Tashev, I., and Zarar, S.
(2018). Limiting numerical precision of neural net-
works to achieve real-time voice activity detection.
In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2236–
2240.
Masrori, P. and Van Damme, P. (2020). Amyotrophic lat-
eral sclerosis: a clinical review. European Journal of
Neurology, 27(10):1918–1929.
MathWorks (2022). Formant Estimation with LPC Coeffi-
cients (R2022b). Retrieved October 30, 2022, from
https://www.mathworks.com/help/signal/ug/formant-
estimation-with-lpc-coefficients.html.
Mekyska, J., Janousova, E., Gomez-Vilda, P., Smekal, Z.,
Rektorova, I., Eliasova, I., Kostalova, M., Mrackova,
M., Alonso-Hernandez, J. B., Faundez-Zanuy, M., and
de Ipi
˜
na, K. L. (2015). Robust and complex approach
of pathological speech signal analysis. Neurocomput-
ing, 167:94–111.
Orozco-Arroyave, J. R., V
´
asquez-Correa, J. C., Vargas-
Bonilla, J. F., Arora, R., Dehak, N., Nidadavolu, P. S.,
Christensen, H., Rudzicz, F., Yancheva, M., Chinaei,
H., Vann, A., Vogler, N., Bocklet, T., Cernak, M.,
Hannink, J., and N
¨
oth, E. (2018). NeuroSpeech: An
open-source software for Parkinson’s speech analysis.
Digital Signal Processing: A Review Journal, 77:207–
221.
Paganoni, S., Macklin, E. A., Lee, A., Murphy, A., Chang,
J., Zipf, A., Cudkowicz, M., and Atassi, N. (2014).
Diagnostic timelines and delays in diagnosing amy-
otrophic lateral sclerosis (als). Amyotrophic Lateral
Sclerosis and Frontotemporal Degeneration, 15:453–
456.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Ramanarayanan, V., Lammert, A. C., Rowe, H. P., Quatieri,
T. F., and Green, J. R. (2022). Speech as a biomarker:
Opportunities, interpretability, and challenges. Per-
spectives of the ASHA Special Interest Groups, 7:276–
283.
Stegmann, G. M., Hahn, S., Liss, J., Shefner, J., Rutkove,
S., Shelton, K., Duncan, C. J., and Berisha, V. (2020).
Early detection and tracking of bulbar changes in als
via frequent and remote speech analysis. npj Digital
Medicine, 3:132.
Sztah
´
o., D., G
´
abor., K., and G
´
abriel., T. (2021). Deep learn-
ing solution for pathological voice detection using
lstm-based autoencoder hybrid with multi-task learn-
ing. In Proceedings of the 14th International Joint
Conference on Biomedical Engineering Systems and
Technologies - BIOSIGNALS,, pages 135–141. IN-
STICC, SciTePress.
Talbott, E. O., Malek, A. M., and Lacomis, D. (2016). The
BIOSIGNALS 2023 - 16th International Conference on Bio-inspired Systems and Signal Processing
84