input observers. International Journal of Electrical
Power & Energy Systems, 110, 208–222. https://
doi.org/10.1016/j.ijepes.2019.03.008
Karimipour, H., & Dinavahi, V. (2018). Robust massively
parallel dynamic state estimation of power systems
against Cyber-Attack. IEEE Access, 6, 2984–2995.
https://doi.org/10.1109/access.2017.2786584
Karimipour, H., & Dinavahi, V. (2017). On false data
injection attack against dynamic state estimation on
Smart Power Grids. 2017 IEEE International
Conference on Smart Energy Grid Engineering
(SEGE). https://doi.org/10.1109/sege.2017.8052831
Sahoo, S., Mishra, S., Peng, J. C.-H., & Dragicevic, T.
(2019). A stealth Cyber-Attack detection strategy for
DC microgrids. IEEE Transactions on Power
Electronics, 34(8), 8162–8174. https://doi.org/10.1109/
tpel.2018.2879886
Li, B., Ding, T., Huang, C., Zhao, J., Yang, Y., & Chen, Y.
(2019). Detecting false data injection attacks against
power system state estimation with fast go-
decomposition approach. IEEE Transactions on
Industrial Informatics, 15(5), 2892–2904. https://
doi.org/10.1109/tii.2018.2875529
Liu, L., Esmalifalak, M., Ding, Q., Emesih, V. A., & Han,
Z. (2014). Detecting false data injection attacks on
power grid by sparse optimization. IEEE Transactions
on Smart Grid, 5(2), 612–621. https://doi.org/
10.1109/tsg.2013.2284438
Ameli, A., Hooshyar, A., & El-Saadany, E. F. (2019).
Development of a cyber-resilient line current
differential relay. IEEE Transactions on Industrial
Informatics, 15(1), 305–318. https://doi.org/10.1109/
tii.2018.2831198
Ashok, A., Govindarasu, M., & Ajjarapu, V. (2016). Online
detection of stealthy false data injection attacks in
power system state estimation. IEEE Transactions on
Smart Grid, 1–1. https://doi.org/10.1109/tsg.2016.
2596298
Binna, S., Kuppannagari, S. R., Engel, D., & Prasanna, V.
K. (2018). Subset level detection of false data injection
attacks in smart grids. 2018 IEEE Conference on
Technologies for Sustainability (SusTech). https://
doi.org/10.1109/sustech.2018.8671357
Foroutan, S. A., & Salmasi, F. R. (2017). Detection of false
data injection attacks against state estimation in smart
grids based on a mixture gaussian distribution learning
method. IET Cyber-Physical Systems: Theory &
Applications, 2(4), 161–171. https://doi.org/10.1049/
iet-cps.2017.0013
Wang, D., Wang, X., Zhang, Y., & Jin, L. (2019). Detection
of power grid disturbances and cyber-attacks based on
machine learning. Journal of Information Security and
Applications, 46, 42–52. https://doi.org/10.1016/j.
jisa.2019.02.008
Zanetti, M., Jamhour, E., Pellenz, M., Penna, M.,
Zambenedetti, V., & Chueiri, I. (2019). A tunable fraud
detection system for advanced metering infrastructure
using short-lived patterns. IEEE Transactions on Smart
Grid, 10(1), 830–840. https://doi.org/10.1109/tsg.2017
.2753738
Viegas, J. L., & Vieira, S. M. (2017). Clustering-based
novelty detection to uncover electricity theft. 2017
IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). https://doi.org/10.1109/fuzz-ieee.2017.
8015546
Farsadi, Murtaza & Mohammadzadeh Shahir, Farzad &
Babaei, Ebrahim. (2017). Power System States
Estimations Using Kalman Filter.
Qi, J., Taha, A. F., & Wang, J. (2018). Comparing Kalman
filters and observers for power system dynamic state
estimation with model uncertainty and malicious cyber
attacks. IEEE Access, 6, 77155–77168. https://doi.org/
10.1109/access.2018.2876883
Taha, A. F., Qi, J., Wang, J., & Panchal, J. H. (2018). Risk
mitigation for dynamic state estimation against cyber
attacks and unknown inputs. IEEE Transactions on
Smart Grid, 9(2), 886–899. https://doi.org/10.1109/tsg.
2016.2570546
Minot, A., Sun, H., Nikovski, D., & Zhang, J. (2019).
Distributed estimation and detection of cyber-physical
attacks in Power Systems. 2019 IEEE International
Conference on Communications Workshops (ICC
Workshops). https://doi.org/10.1109/iccw.2019.8756653
Zhang, J., Welch, G., Bishop, G., & Huang, Z. (2014). A
two-stage Kalman filter approach for robust and real-
time power system state estimation. IEEE Transactions
on Sustainable Energy, 5(2), 629–636. https://
doi.org/10.1109/tste.2013.2280246
Manandhar, K., Cao, X., Hu, F., & Liu, Y. (2014).
Detection of faults and attacks including false data
injection attack in smart grid using Kalman filter. IEEE
Transactions on Control of Network Systems, 1(4),
370–379. https://doi.org/10.1109/tcns.2014.2357531
Zhang, J., Welch, G., & Bishop, G. (2010). Observability
and estimation uncertainty analysis for PMU placement
alternatives. North American Power Symposium 2010.
https://doi.org/10.1109/naps.2010.5618970
Mo, Yilin & Sinopoli, Bruno. (2010). False data injection
attacks in control systems. Preprints of the 1st Workshop
on Secure Control Systems.
Abur, A., & Expósito, G. A. (2004). Power System State
Estimation: Theory and implementation. CRC Press.
Reliable Energy Analytics. (2021). COMPARING ISO
LOAD FORECASTING METHODOLOGIES.
energycentral.com. https://energycentral.com/system/fi
les/ece/nodes/337915/2018-lf-methodologies-research-
report-final-ec.pdf
Wang, Y., Zhang, Z., Ma, J., & Jin, Q. (2022). KFRNN: An
effective false data injection attack detection in smart
grid based on Kalman filter and recurrent neural
network. IEEE Internet of Things Journal, 9(9), 6893–
6904. https://doi.org/10.1109/jiot.2021.3113900
Mokhtar, M., Robu, V., Flynn, D., Higgins, C., Whyte, J.,
Loughran, C., & Fulton, F. (2021). Prediction of
voltage distribution using deep learning and identified
key smart meter locations. Energy and AI, 6, 100103.
https://doi.org/10.1016/j.egyai.2021.100103
California ISO. (2022). CAISO. https://www.caiso.com
Labbe, R. R. (2020). Kalman and Bayesian Filters in
Python.