REFERENCES
BioTest (2017). Result of algorithm biotest 1.3.8 on ficv-
1.0. https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/
AlgResult.aspx?algId=2787. Visited: Dec-2022.
Caruana, R. (1997). Multitask Learning. Machine Learn-
ing, 28(1):41–75.
Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural
architecture search: A survey. Journal of Machine
Learning Research, 20:1–21.
Ferrara, M., Franco, A., Maio, D., and Maltoni, D. (2012).
Face image conformance to ISO/ICAO standards in
machine readable travel documents. IEEE Transac-
tions on Information Forensics and Security, 7:1204–
1213.
Ferrara, M., Franco, A., Maio, D., and Mal-
toni, D. (2022). FVC-ongoing. benchmark
area: Face image ISO compliance verification.
https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/
BenchmarkAreas/BenchmarkAreaFICV.aspx. Vis-
ited: Dec-2022.
Guido, A. C. M. S. (2017). Introduction to Machine Learn-
ing with Python. O’Reilly, third edit edition.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Iden-
tity Mappings in Deep Residual Networks. LNCS,
9908:630–645.
ICAO (2015). Doc 9303 - Machine Readable Travel Docu-
ments - Part 1: Introduction - 7th Edition.
ISO (2017). ISO/IEC 19754-5 information technology —
biometric data interchange formats — part 5: Face
image data. https://www.iso.org/standard/50867.html.
Visited: Dec-2022.
Krizhevsky, A. (2009). Learning Multiple Layers of Fea-
tures from Tiny Images. Technical report, MIT.
Leang, I., Sistu, G., B
¨
urger, F., Bursuc, A., and Yoga-
mani, S. (2020). Dynamic task weighting methods
for multi-task networks in autonomous driving sys-
tems. In 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), pages 1–8.
IEEE.
Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W.,
Li, L.-j., Fei-fei, L., Yuille, A., Huang, J., and Mur-
phy, K. (2018a). Progressive Neural Architecture
Search. Proceedings of the 15th European Conference
on Computer Vision, pages 19–34.
Liu, H., Simonyan, K., and Yang, Y. (2018b). Darts:
Differentiable architecture search. arXiv preprint
arXiv:1806.09055.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. Proceedings of the
IEEE International Conference on Computer Vision,
pages 3730–3738.
Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris,
R. (2017). Fully-adaptive feature sharing in multi-task
networks with applications in person attribute classi-
fication. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5334–
5343.
Maltoni, D., Maio, D., Jain, A. K., and Parbhakar, S. (2009).
Handbook of Fingerprint Recognition. Springer, 2nd
edition.
Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean,
J. (2018). Efficient Neural Architecture Search via
parameter Sharing. 35th International Conference on
Machine Learning (ICML 2018), 9:6522–6531.
Ruder, S. (2017). An Overview of Multi-Task Learning in
Deep Neural Networks. arXiv, pages 1–14.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L. C. (2018). MobileNetV2: Inverted Resid-
uals and Linear Bottlenecks. Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, pages 4510–4520.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2020). Grad-CAM: Vi-
sual Explanations from Deep Networks via Gradient-
Based Localization. International Journal of Com-
puter Vision, 128(2):336–359.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions (ICLR), pages 1–14.
Sun, X., Panda, R., and Feris, R. (2019). AdaShare: Learn-
ing what to share for efflcient deep multi-task learn-
ing. arXiv, pages 1–19.
Suteu, M. and Guo, Y. (2019). Regularizing deep multi-task
networks using orthogonal gradients. arXiv preprint
arXiv:1912.06844.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2818–2826.
Vandenhende, S., Georgoulis, S., De Brabandere, B., and
Van Gool, L. (2019). Branched multi-task net-
works: deciding what layers to share. arXiv preprint
arXiv:1904.02920.
Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proes-
mans, M., Dai, D., and Van Gool, L. (2021). Multi-
task learning for dense prediction tasks: A survey.
IEEE transactions on pattern analysis and machine
intelligence.
Vsoft (2017). Result of algorithm biopass face 5.6 on ficv-
1.0. https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/
AlgResult.aspx?algId=6336. [Visited Dec-2022].
Xie, S., Zheng, H., Liu, C., and Lin, L. (2019). SNAS:
stochastic neural architecture search. In International
Conference on Learning Representations, pages 1–17.
Zhang, L., Liu, X., and Guan, H. (2022). A tree-
structured multi-task model recommender. arXiv
preprint arXiv:2203.05092, pages 1–22.
Zhang, Y. and Yang, Q. (2021). A survey on multi-task
learning. IEEE Transactions on Knowledge and Data
Engineering, pages 5586–5609.
Zoph, B. and Le, Q. (2017). Neural architecture search with
reinforcement learning. In International Conference
on Learning Representations.
Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018).
Learning Transferable Architectures for Scalable Im-
age Recognition. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 8697–8710.
Neural Architecture Search in the Context of Deep Multi-Task Learning
691