Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., and Alahi,
A. (2018). Social GAN: Socially acceptable trajec-
tories with generative adversarial networks. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2255–2264. IEEE
Computer Society.
Higashi, S., Michishita, Y., Enokida, S., Shibata, M., and
Yamada, H. (2018). Pedestrian detection based on
Gaussian mixture model multiresolution CoHOG. In
Proceedings of the 4th World Congress on Electri-
cal Engineering and Computer Systems and Sciences
(EECSS), number MVML 100.
Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural Com-
putation, 18(7):1527–1554.
Iocchi, L., Holz, D., del Solar, J. R., Sugiura, K., and van
der Zant, T. (2015). RoboCup@Home: Analysis and
results of evolving competitions for domestic and ser-
vice robots. Artificial Intelligence, 229:258–281.
Ishida, Y., Morie, T., and Tamukoh, H. (2020). A hardware
intelligent processing accelerator for domestic service
robots. Advanced Robotics, 34(14):947–957.
Iwata, S. and Enokida, S. (2014). Object detection based
on multiresolution CoHOG. In Bebis, G., Boyle,
R., Parvin, B., Koracin, D., McMahan, R., Jerald,
J., Zhang, H., Drucker, S. M., Kambhamettu, C.,
El Choubassi, M., Deng, Z., and Carlson, M., edi-
tors, Advances in Visual Computing, pages 427–437.
Springer International Publishing.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
ImageNet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Michishita, Y., Higashi, S., Shibata, M., Muramatsu, R., Ya-
mada, H., and Enokida, S. (2018). Autonomous state
space construction method based on mixed normal
distributions for pedestrian detection. In IEEJ Trans-
actions on Electronics, Information and Systems, vol-
ume 138, pages 1100–1107.
Nagamine, Y., Yoshihiro, K., Shibata, M., Yamada, H.,
Enokida, S., and Tamukoh, H. (2021). A hardware-
oriented algorithm of GMM-MRCoHOG for high-
performance human detection by an FPGA. In Naka-
jima, M., Kim, J.-G., Lie, W.-N., and Kemao, Q.,
editors, International Workshop on Advanced Imag-
ing Technology (IWAIT) 2021, volume 11766, page
117660B. International Society for Optics and Pho-
tonics, SPIE.
Ono, T., Kanaoka, D., Shiba, T., Tokuno, S., Yano,
Y., Mizutani, A., Matsumoto, I., Amano, H., and
Tamukoh, H. (2022). Solution of world robot chal-
lenge 2020 partner robot challenge (real space). Ad-
vanced Robotics, 36(17-18):870–889.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 779–
788. IEEE Computer Society.
Redmon, J. and Farhadi, A. (2018). YOLOv3:
An incremental improvement. arXiv preprint
arXiv:1804.02767.
Takemoto, R., Nagamine, Y., Yoshihiro, K., Shibata,
M., Yamada, H., Tanaka, Y., Enokida, S., and
Tamukoh, H. (2022). Hardware-oriented algorithm
for human detection using GMM-MRCoHOG fea-
tures. In Farinella, G. M., Radeva, P., and Boua-
touch, K., editors, Proceedings of the 17th Interna-
tional Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications,
VISIGRAPP 2022, volume 4: VISAPP, pages 749–
757. SCITEPRESS.
Tanaka, Y., Morie, T., and Tamukoh, H. (2020). An
Amygdala-inspired classical conditioning model im-
plemented on an FPGA for home service robots. IEEE
Access, 8:212066–212078.
Yamamoto, T., Terada, K., Ochiai, A., Sato, F., Asahara,
Y., and Murase, K. (2019). Development of human
support robot as the research platform of a domestic
mobile manipulator. ROBOMECH Journal, 6(4).
Yoshimoto, Y. and Tamukoh, H. (2021). FPGA implemen-
tation of a binarized dual stream convolutional neural
network for service robots. Journal of Robotics and
Mechatronics, 33(2):386–399.
Memory-Efficient Implementation of GMM-MRCoHOG for Human Recognition Hardware
655