resulting in both mode-locking and Q-switching
operation after intra-cavity polarization control.
Under mode-locking operation, a fundamental
repetition rate of 1.48 MHz was attained for pump
power values higher than 200 mW for a central
wavelength of 1564.4 nm. In the Q-switching
operation, short pulses were attained with a repetition
rate between 12.7 and 14.4 kHz. At the lower
repetition rate, a pulse duration of 14.3 µs was
achieved.
REFERENCES
Ahmad, H., Lee, C. S. J., Ismail, M. A., Ali, Z. A., Reduan,
S. A., Ruslan, N. E., Ismail, M. F., & Harun, S. W.
(2016). Zinc oxide (ZnO) nanoparticles as saturable
absorber in passively Q-switched fiber laser. Optics
Communications, 381, 72–76. https://doi.org/10.1016/
j.optcom.2016.06.073
Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z. X.,
Loh, K. P., & Tang, D. Y. (2009). Atomic-layer
craphene as a saturable absorber for ultrafast pulsed
lasers. Advanced Functional Materials, 19(19), 3077–
3083. https://doi.org/10.1002/adfm.200901007
Cheng, P., Du, Y., Han, M., & Shu, X. (2020). Mode-locked
and Q-switched mode-locked fiber laser based on a
ferroferric-oxide nanoparticles saturable absorber.
Optics Express, 28(9), 13177. https://doi.org/10.1364/
OE.391006
Hoy, C. L., Ferhanoǧlu, O., Yildirim, M., Kim, K. H.,
Karajanagi, S. S., Chan, K. M. C., Kobler, J. B., Zeitels,
S. M., & Ben-Yakar, A. (2014). Clinical ultrafast laser
surgery: Recent advances and future directions. IEEE
Journal on Selected Topics in Quantum Electronics,
20(2). https://doi.org/10.1109/JSTQE.2013.2287098
Keller, U., Weingarten, K. J., Kartner, F. X., Kopf, D.,
Braun, B., Jung, I. D., Fluck, R., Honninger, C.,
Matuschek, N., & Aus der Au, J. (1996).
Semiconductor saturable absorber mirrors (SESAM’s)
for femtosecond to nanosecond pulse generation in
solid-state lasers. IEEE Journal of Selected Topics in
Quantum Electronics, 2(3), 435–453. https://doi.org/
10.1109/2944.571743
Liu, M., Wei, Z. W., Li, H., Li, T. J., Luo, A. P., Xu, W. C.,
& Luo, Z. C. (2020). Visualizing the “Invisible” Soliton
Pulsation in an Ultrafast Laser. Laser and Photonics
Reviews, 14(4), 1–8. https://doi.org/10.1002/lpor.
201900317
Liu, X. M., & Mao, D. (2010). Compact all-fiber high-
energy fiber laser with sub-300-fs duration. Optics
Express, 18(9), 8847. https://doi.org/10.1364/OE.
18.008847
Oh, J. S., & Kim, S.-W. (2005). Femtosecond laser pulses
for surface-profile metrology. Optics Letters, 30(19),
2650. https://doi.org/10.1364/ol.30.002650
Set, S. Y., Yaguchi, H., Tanaka, Y., & Jablonski, M. (2004).
Laser Mode Locking Using a Saturable Absorber
Incorporating Carbon Nanotubes. Journal of Lightwave
Technology, 22(1), 51–56. https://doi.org/10.1109/
JLT.2003.822205
Steinberg, D., Zapata, J. D., De Souza, E. A., & Saito, L.
(2018). Mechanically exfoliated graphite onto D-
shaped optical fiber for femtosecond mode-locked
Erbium-doped fiber laser. Journal of Lightwave
Technology, 36(10), 1868–1874. https://doi.org/
10.1109/JLT.2018.2793764
Svelto, O. (2010). Principles of Lasers
. Springer US.
https://doi.org/10.1007/978-1-4419-1302-9
Wang, S., Wang, L., Zhang, S., Zheng, H., Zhang, C., Liu,
S., Liu, F., & Cheng, G. J. (2022). A low-damage
copper removal process by femtosecond laser for
integrated circuits. Vacuum, 203(June), 111273.
https://doi.org/10.1016/j.vacuum.2022.111273
Zhao, X., Liu, Z. B., Yan, W. B., Wu, Y., Zhang, X. L.,
Chen, Y., & Tian, J. G. (2011). Ultrafast carrier
dynamics and saturable absorption of solution-
processable few-layered graphene oxide. Applied
Physics Letters, 98(12), 2009–2012. https://doi.org/
10.1063/1.3570640
Zhou, Z., Liu, W., Huang, Y., Wang, H., Jianping, H.,
Huang, M., & Jinping, O. (2012). Optical fiber Bragg
grating sensor assembly for 3D strain monitoring and
its case study in highway pavement. Mechanical
Systems and Signal Processing, 28, 36–49.
https://doi.org/10.1016/j.ymssp.2011.10.003.