resulting  in  both  mode-locking  and  Q-switching 
operation after intra-cavity polarization control. 
Under  mode-locking  operation,  a  fundamental 
repetition  rate  of  1.48  MHz  was  attained  for  pump 
power  values  higher  than  200 mW  for  a  central 
wavelength  of  1564.4 nm.  In  the  Q-switching 
operation, short pulses were attained with a repetition 
rate  between  12.7  and  14.4 kHz.  At  the  lower 
repetition  rate,  a  pulse  duration  of  14.3 µs  was 
achieved.  
REFERENCES 
Ahmad, H., Lee, C. S. J., Ismail, M. A., Ali, Z. A., Reduan, 
S. A., Ruslan, N. E., Ismail, M. F., & Harun, S. W. 
(2016).  Zinc  oxide  (ZnO)  nanoparticles  as  saturable 
absorber  in  passively  Q-switched  fiber  laser.  Optics 
Communications, 381,  72–76.  https://doi.org/10.1016/ 
j.optcom.2016.06.073 
Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z. X., 
Loh,  K.  P.,  &  Tang,  D.  Y.  (2009).  Atomic-layer 
craphene  as  a  saturable  absorber for ultrafast pulsed 
lasers. Advanced Functional Materials, 19(19), 3077–
3083. https://doi.org/10.1002/adfm.200901007 
Cheng, P., Du, Y., Han, M., & Shu, X. (2020). Mode-locked 
and  Q-switched  mode-locked  fiber  laser  based  on  a 
ferroferric-oxide  nanoparticles  saturable  absorber. 
Optics Express, 28(9), 13177. https://doi.org/10.1364/ 
OE.391006 
Hoy,  C.  L.,  Ferhanoǧlu,  O.,  Yildirim,  M.,  Kim,  K.  H., 
Karajanagi, S. S., Chan, K. M. C., Kobler, J. B., Zeitels, 
S. M., & Ben-Yakar, A. (2014). Clinical ultrafast laser 
surgery: Recent advances  and  future directions.  IEEE 
Journal on Selected Topics in Quantum Electronics, 
20(2). https://doi.org/10.1109/JSTQE.2013.2287098 
Keller,  U.,  Weingarten,  K.  J.,  Kartner,  F.  X.,  Kopf,  D., 
Braun,  B.,  Jung,  I.  D.,  Fluck,  R.,  Honninger,  C., 
Matuschek,  N.,  &  Aus  der  Au,  J.  (1996). 
Semiconductor saturable absorber mirrors (SESAM’s) 
for  femtosecond  to  nanosecond  pulse  generation  in 
solid-state  lasers.  IEEE Journal of Selected Topics in 
Quantum Electronics,  2(3),  435–453.  https://doi.org/ 
10.1109/2944.571743 
Liu, M., Wei, Z. W., Li, H., Li, T. J., Luo, A. P., Xu, W. C., 
& Luo, Z. C. (2020). Visualizing the “Invisible” Soliton 
Pulsation  in  an  Ultrafast  Laser.  Laser and Photonics 
Reviews,  14(4),  1–8.  https://doi.org/10.1002/lpor. 
201900317 
Liu,  X.  M.,  &  Mao,  D.  (2010).  Compact  all-fiber  high-
energy  fiber  laser  with  sub-300-fs  duration.  Optics 
Express,  18(9),  8847.  https://doi.org/10.1364/OE. 
18.008847 
Oh, J. S., & Kim, S.-W. (2005). Femtosecond laser pulses 
for  surface-profile  metrology.  Optics Letters,  30(19), 
2650. https://doi.org/10.1364/ol.30.002650 
Set, S. Y., Yaguchi, H., Tanaka, Y., & Jablonski, M. (2004). 
Laser  Mode  Locking  Using  a  Saturable  Absorber 
Incorporating Carbon Nanotubes. Journal of Lightwave 
Technology,  22(1),  51–56.  https://doi.org/10.1109/ 
JLT.2003.822205 
Steinberg, D., Zapata, J. D., De Souza, E. A., & Saito, L. 
(2018).  Mechanically  exfoliated  graphite  onto  D-
shaped  optical  fiber  for  femtosecond  mode-locked 
Erbium-doped  fiber  laser.  Journal of Lightwave 
Technology,  36(10),  1868–1874.  https://doi.org/ 
10.1109/JLT.2018.2793764 
Svelto,  O.  (2010).  Principles of Lasers
.  Springer  US. 
https://doi.org/10.1007/978-1-4419-1302-9 
Wang, S., Wang, L., Zhang, S., Zheng, H., Zhang, C., Liu, 
S.,  Liu,  F.,  &  Cheng,  G.  J.  (2022).  A  low-damage 
copper  removal  process  by  femtosecond  laser  for 
integrated  circuits.  Vacuum,  203(June),  111273. 
https://doi.org/10.1016/j.vacuum.2022.111273 
Zhao,  X., Liu,  Z. B.,  Yan, W.  B., Wu,  Y., Zhang,  X. L., 
Chen,  Y.,  &  Tian,  J.  G.  (2011).  Ultrafast  carrier 
dynamics  and  saturable  absorption  of  solution-
processable  few-layered  graphene  oxide.  Applied 
Physics Letters,  98(12),  2009–2012.  https://doi.org/ 
10.1063/1.3570640 
Zhou,  Z.,  Liu,  W.,  Huang,  Y.,  Wang,  H.,  Jianping,  H., 
Huang, M., & Jinping, O. (2012). Optical fiber Bragg 
grating sensor assembly for 3D strain monitoring and 
its  case  study  in  highway  pavement.  Mechanical 
Systems and Signal Processing,  28,  36–49. 
https://doi.org/10.1016/j.ymssp.2011.10.003.