REFERENCES
Abbasniya MR, Sheikholeslamzadeh SA, Nasiri H, Emami
S (2022) Classification of Breast Tumors Based on
Histopathology Images Using Deep Features and
Ensemble of Gradient Boosting Methods. Computers
and Electrical Engineering 103:108382.
https://doi.org/10.1016/j.compeleceng.2022.108382
Abdar M, Makarenkov V (2019) CWV-BANN-SVM
ensemble learning classifier for an accurate diagnosis
of breast cancer. Measurement 146:557–570.
https://doi.org/10.1016/j.measurement.2019.05.022
Abdar M, Zomorodi-Moghadam M, Zhou X, et al (2020) A
new nested ensemble technique for automated
diagnosis of breast cancer. Pattern Recognition Letters
132:123–131. https://doi.org/10.1016/j.patrec.2018.11.
004
Alaoui O, Zerouaoui H, Idri A (2022) Deep Stacked
Ensemble for Breast Cancer Diagnosis. pp 435–445
B N (2019) Image Data Pre-Processing for Neural
Networks. In: Medium. https://becominghuman.ai/
image-data-pre-processing-for-neural-networks-49828
9068258. Accessed 12 May 2021
Breiman L (1996) Bagging predictors. Mach Learn 24:123–
140. https://doi.org/10.1007/BF00058655
Clegg LX, Reichman ME, Miller BA, et al (2009) Impact
of socioeconomic status on cancer incidence and stage
at diagnosis: selected findings from the surveillance,
epidemiology, and end results: National Longitudinal
Mortality Study. Cancer Causes Control 20:417–435.
https://doi.org/10.1007/s10552-008-9256-0
din NM ud, Dar RA, Rasool M, Assad A (2022) Breast
cancer detection using deep learning: Datasets,
methods, and challenges ahead. Computers in Biology
and Medicine 149:106073. https://doi.org/10.
1016/j.compbiomed.2022.106073
Emerson P (2013) The original Borda count and partial
voting. Soc Choice Welf 40:353–358. https://
doi.org/10.1007/s00355-011-0603-9
Guo Y, Hui D, Song F, et al (2018) Breast Cancer Histology
Image Classification Based on Deep Neural Networks.
pp 827–836
Gupta V, Bhavsar A (2017) Breast Cancer
Histopathological Image Classification: Is
Magnification Important? In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE, Honolulu, HI, USA, pp
769–776
Güzel K, Bı̇ Lgı̇ N G (2020) Classification of Breast Cancer
Images Using Ensembles of Transfer Learning. Sakarya
University Journal of Science. https://doi.org/
10.16984/saufenbilder.720693
Hameed Z, Zahia S, Garcia-Zapirain B, et al (2020) Breast
Cancer Histopathology Image Classification Using an
Ensemble of Deep Learning Models. Sensors 20:4373.
https://doi.org/10.3390/s20164373
Hastie T, Tibshirani R, Friedman J (2009) Ensemble
Learning. In: Hastie T, Tibshirani R, Friedman J (eds)
The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, New York, NY, pp
605–624
Jelihovschi E, Faria JC, Allaman IB (2014) ScottKnott: A
Package for Performing the Scott-Knott Clustering
Algorithm in R. Tend Mat Apl Comput 15:003.
https://doi.org/10.5540/tema.2014.015.01.0003
Kassani SH, Kassani PH, Wesolowski MJ, et al (2019)
Classification of Histopathological Biopsy Images
Using Ensemble of Deep Learning Networks.
arXiv:190911870 [cs, eess]
Kumar V, Abbas AK, Aster JC (2017) Robbins Basic
Pathology E-Book. Elsevier Health Sciences
Lbachir IA, Daoudi I, Tallal S (2021) Automatic computer-
aided diagnosis system for mass detection and
classification in mammography. Multimed Tools Appl
80:9493–9525. https://doi.org/10.1007/s11042-020-
09991-3
Nakach F-Z, Zerouaoui H, Idri A (2022a) Deep Hybrid
AdaBoost Ensembles for Histopathological Breast
Cancer Classification. In: Rocha A, Adeli H, Dzemyda
G, Moreira F (eds) Information Systems and
Technologies. Springer International Publishing,
Cham, pp 446–455
Nakach F-Z, Zerouaoui H, Idri A (2022b) Random Forest
Based Deep Hybrid Architecture for Histopathological
Breast Cancer Images Classification. pp 3–18
Nascimento DSC, Canuto AMP, Silva LMM, Coelho ALV
(2011) Combining different ways to generate diversity
in bagging models: An evolutionary approach. In: The
2011 International Joint Conference on Neural
Networks. pp 2235–2242
Naveen, Sharma RK, Ramachandran Nair A (2019)
Efficient Breast Cancer Prediction Using Ensemble
Machine Learning Models. In: 2019 4th International
Conference on Recent Trends on Electronics,
Information, Communication & Technology
(RTEICT). IEEE, Bangalore, India, pp 100–104
Nemade V, Pathak S, Dubey A, Barhate D (2022) A Review
and Computational Analysis of Breast Cancer Using
Different Machine Learning Techniques. https://doi.
org/10.46338/ijetae0322_13
Opitz D, Maclin R (1999) Popular Ensemble Methods: An
Empirical Study. jair 11:169–198. https://doi.org/
10.1613/jair.614
Otoom AF, Abdallah EE, Hammad M (2015) Breast Cancer
Classification: Comparative Performance Analysis of
Image Shape-Based Features and Microarray Gene
Expression Data. IJBSBT 7:37–46. https://doi.org/
10.14257/ijbsbt.2015.7.2.04
Polikar R (2012) Ensemble Learning. In: Zhang C, Ma Y
(eds) Ensemble Machine Learning: Methods and
Applications. Springer US, Boston, MA, pp 1–34
Ponnaganti ND, Anitha R (2022) A Novel Ensemble
Bagging Classification Method for Breast Cancer
Classification Using Machine Learning Techniques. TS
39:229–237. https://doi.org/10.18280/ts.390123
Saxena S, Gyanchandani M (2020) Machine Learning
Methods for Computer-Aided Breast Cancer Diagnosis
Using Histopathology: A Narrative Review. Journal of
Deep Hybrid Bagging Ensembles for Classifying Histopathological Breast Cancer Images