Lecture Notes in Computer Science, ACIIDS 2022,
Springer, Cham.
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016).
Radiomics: images are more than pictures, they are
data. Radiology, 278(2),563-577.
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny,
A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017).
Computational Radiomics System to Decode the
Radiographic Phenotype. Cancer Research, 77(21),
e104–e107.
Haeno, H. et al. (2012). Computational modeling of
pancreatic cancer reveals kinetics of metastasis
suggesting optimum treatment strategies. Cell 148,
362–375.
Hahnfeldt, P., Panigraphy, D., Folkman, J., and Hlatky, L.
(1999). Tumor development under angiogenic
signaling: a dynamical theory of tumor growth,
treatment, response and postvascular dormancy.
Cancer Research, 59:4770–4775.
Inamura, K. (2017). Lung cancer: understanding its
molecular pathology and the 2015 WHO classification.
Front Oncol. Aug 28; 7.
Iwata, K., Kawasaki, K., Shigesada, N. (2000). A
dynamical model for the growth and size distribution of
multiple metastatic tumors. J Theor Biol 203(2):177-
186.
Jaksik, R., Smieja, J. (2022). Prediction of lung cancer
survival basing on -omic data, In: Intelligent
Information and Database Systems, Nguyen, N.T. et al.
(eds):116-127. Lecture Notes in Computer Science, vol
13758. ACIIDS 2022, Springer, Cham.
Kimmel, M., Axelrod, D.E. (2015). Branching Processes in
Biology, Springer, New York, Heidelberg Dordrecht
London.
Kozłowska, E., Świerniak, A. (2022). The Stochastic
Mathematical Model Predicts Angio-Therapy Could
Delay the Emergence of Metastases in Lung Cancer. In:
Biocybernetics and Biomedical Engineering – Current
Trends and Challenges, D.G., Zieliński K., Liebert A.,
Kacprzyk J. (eds). Lecture Notes in Networks and
Systems, vol 293. Springer, Cham.
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A.,
Schabath, M.B., Forster, K., Aerts, H.J., Dekker, A.,
Fenstermacher, D. and Goldgof, D.B. (2012).
Radiomics: the process and the challenges. Magnetic
resonance imaging, 30(9).1234-1248.
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho,
S., Van Stiphout, R.G., Granton, P., Zegers, C.M.,
Gillies, R., Boellard, R., Dekker, A. and Aerts, H.J.
(2012). Radiomics: extracting more information from
medical images using advanced feature
analysis. European Journal of Cancer,48(4),.441-446.
Ledzewicz, U., Schaettler, H. (2015). Optimal Control for
Mathematical Models of Cancer Therapies, Springer,
New York.
Li, T., Kung, H.J., Mack, P.H., Gandara, D.R. (2013).
Genotyping and Genomic Profiling of Non–Small-Cell
Lung Cancer: Implications for Current and Future
Therapies, Journal of Clinical Oncology, 31 (8), 1039-
1043.
Nicolo, C., Perier, C., Prague, M., Bellera, C., MacGrogan,
G., Saut, O., Benzekry, S. (2000) Machine Learning
and Mechanistic Modeling for Prediction of Metastatic
Relapse in Early-Stage Breast Cancer. JCO Clin
Cancer Inform, 4:259-274.
Pietrowska, M., Jelonek, K., Michalak, M., Roś, M.,
Rodziewicz, P., Chmielewska, K., Polański, K.,
Polańska, J., Gdowicz- Kłosok, A., Giglok, M.,
Suwiński, R., Tarnawski, R., Dziadziuszko, R.,
Rzyman, R., and Widłak, P. (2014). Identification of
serum proteome components associated with
progression of non-small cell lung cancer, Acta
Biochem. Pol. 61 (2), 325–331.
Popper, H.H. (2016). Progression and metastasis of lung
cancer. Cancer Metastasis Rev. Mar1;35(1):75–91.
Saidel, G.M., Liotta, L.A., Kleinerman, J. (1976). System
dynamics of a metastatic process from an implanted
tumor. J Theor Biol 56(2):417-434.
Smieja, J., Psiuk-Maksymowicz, K., Swierniak, A. (2022).
A Framework for Modeling and Efficacy Evaluation of
Treatment of Cancer with Metastasis. In:
Biocybernetics and Biomedical Engineering – Current
Trends and Challenges. Pijanowska, D.G., Zieliński,
K., Liebert, A., Kacprzyk, J. (eds). Lecture Notes in
Networks and Systems, vol 293. Springer, Cham.
Suwinski, R., Klusek, A., Tyszkiewicz, T., Kowalska, M.,
Szczesniak-Klusek, B., Gawkowska-Suwinska, M.,
Tukiendorf, A., Kozielski, J., Jarzab, M. (2012). Gene
Expression from Bronchoscopy Obtained Tumour
Samples as a Predictor of Outcome in Advanced
Inoperable Lung Cancer, Plos One 7 ( 7): e41379.
Suwinski, R., Giglok, M., Galwas-Kliber, K., Idasiak, A.,
Jochymek, B., Deja, R., Maslyk, B., Mrochem-Kwar-
ciak, J., Butkiewicz, D. (2019). Blood serum proteins as
biomarkers for prediction of survival, locoregional
control and distant metastasis rate in radiotherapy and
radio-chemotherapy for non-small cell lung cancer,
BMC Cancer, 19:427.
Swierniak A., Krześlak M. (2013). Application of
evolutionary games to modeling carcinogenesis, Math
Biosci Eng, 10(3), 873-911.
Swierniak A, Kimmel M, Smieja J, Puszynski K, Psiuk-
Maksymowicz K. (2016). System Engineering
Approach to Planing Anticancer Therapies, Springer,
New York, Heidelberg Dordrecht London.
Swierniak, A., Krzeslak, M., Borys, D., and Kimmel M.
(2018). The role of interventions in the cancer
evolution-an evolutionary games approach. Math
Biosci. Eng.16(10); 265-291.
Swierniak, A., Krzeslak, M. (2016). Cancer heterogeneity
and multilayer spatial evolutionary games. Biology
Direct, 11(1):53-61.
Tomlinson I.P.M., Bodmer W.F. (1997). Modeling the
consequences of interactions between tumour cells
.
British Journal of Cancer, 75, 1997, 157-180.