EL Idrissi, T., Idri, A., & Bakkoury, Z. (2019). Systematic
map and review of predictive techniques in diabetes
self-management. International Journal of Information
Management, 46, 263–277. https://doi.org/10.
1016/j.ijinfomgt.2018.09.011
Hansen, L. K., & Salamon, P. (1990). Neural network
ensembles. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(10), 993–1001. https://
doi.org/10.1109/34.58871
Hong, N., Park, H., & Rhee, Y. (2020). Machine Learning
Applications in Endocrinology and Metabolism
Research: An Overview. Endocrinology and
Metabolism, 35(1), 71–84. https://doi.org/10.
3803/EnM.2020.35.1.71
Hosni, M., Carrillo-de-Gea, J. M., Idri, A., Fernández-
Alemán, J. L., & García-Berná, J. A. (2019). Using
ensemble classification methods in lung cancer
disease*. 2019 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society
(EMBC), 1367–1370. https://doi.org/10.1109/EMBC.
2019.8857435
Khadilkar, K. S., Bandgar, T., Shivane, V., Lila, A., &
Shah, N. (2013). Current concepts in blood glucose
monitoring. Indian Journal of Endocrinology and
Metabolism, 17(9), 643. https://doi.org/10.4103/2230-
8210.123556
Kim, Y. J., Jang, H., Lee, K., Park, S., Min, S.-G., Hong,
C., Park, J. H., Lee, K., Kim, J., Hong, W., Jung, H.,
Liu, Y., Rajkumar, H., Khened, M., Krishnamurthi, G.,
Yang, S., Wang, X., Han, C. H., Kwak, J. T., … Choi,
J. (2021). PAIP 2019: Liver cancer segmentation
challenge. Medical Image Analysis, 67, 101854.
https://doi.org/10.1016/j.media.2020.101854
Kreiss, J.-P., & Lahiri, S. N. (2012). 1—Bootstrap Methods
for Time Series. In T. Subba Rao, S. Subba Rao, & C.
R. Rao (Eds.), Handbook of Statistics (Vol. 30, pp. 3–
26). Elsevier. https://doi.org/10.1016/B978-0-444-
53858-1.00001-6
Oviedo, S., Vehí, J., Calm, R., & Armengol, J. (2017). A
review of personalized blood glucose prediction
strategies for T1DM patients. International Journal for
Numerical Methods in Biomedical Engineering, 33(6),
e2833. https://doi.org/10.1002/cnm.2833
Petropoulos, F., Hyndman, R. J., & Bergmeir, C. (2018).
Exploring the sources of uncertainty: Why does
bagging for time series forecasting work? European
Journal of Operational Research, 268(2), 545–554.
https://doi.org/10.1016/j.ejor.2018.01.045
Porwal, P., Pachade, S., Kokare, M., Deshmukh, G., Son,
J., Bae, W., Liu, L., Wang, J., Liu, X., Gao, L., Wu, T.,
Xiao, J., Wang, F., Yin, B., Wang, Y., Danala, G., He,
L., Choi, Y. H., Lee, Y. C., … Mériaudeau, F. (2020).
IDRiD: Diabetic Retinopathy – Segmentation and
Grading Challenge. Medical Image Analysis, 59,
101561. https://doi.org/10.1016/j.media.2019.101561
Viboud, C., Sun, K., Gaffey, R., Ajelli, M., Fumanelli, L.,
Merler, S., Zhang, Q., Chowell, G., Simonsen, L., &
Vespignani, A. (2018). The RAPIDD ebola forecasting
challenge: Synthesis and lessons learnt. Epidemics, 22,
13–21. https://doi.org/10.1016/j.epidem.2017.08.002
Wadghiri, M. Z., Idri, A., El Idrissi, T., & Hakkoum, H.
(2022). Ensemble blood glucose prediction in diabetes
mellitus: A review. Computers in Biology and
Medicine, 147, 105674. https://doi.org/10.1016/j.
compbiomed.2022.105674
Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D.,
Mamykina, L., Botsis, T., & Hartvigsen, G. (2019).
Data-driven modeling and prediction of blood glucose
dynamics: Machine learning applications in type 1
diabetes. Artificial Intelligence in Medicine, 98, 109–
134. https://doi.org/10.1016/j.artmed.2019.07.007
World Health Organization. (2019). Classification of
diabetes mellitus. https://apps.who.int/iris/rest/
bitstreams/1233344/retrieve
Zhou, Z.-H. (2012). Ensemble Methods: Foundations and
Algorithms (1st Edition). Chapman and Hall/CRC.
https://doi.org/10.1201/b12207