REFERENCES
Gingold, R.A., Monaghan, J.J. (1977). Smoothed Particle
Hydrodynamics: theory and application to non-
spherical stars. Mon.Not.R. Astron. Soc, 181(3): 375-
389.
Lucy, L.B. (1977). A numerical approach to the testing of
the fission hypothesis. Astronomy Journal, 82: 1013-
1024.
Solenthaler, B., Pajarola, R. (2009). Predictive-corrective
incompressible SPH. ACM SIGGRAPH 2009 papers
(SIGGRAPH '09). Association for Computing
Machinery. New York, NY, USA, Article 40, 1โ6.
https://doi.org/10.1145/1576246.1531346
Shadloo, M.S., Oger, G., LeTouze, D. (2016). Smoothed
particle hydrodynamics method for fluid flows, towards
industrial applications: Motivations, current state, and
challenges. Computers&Fluids, 136: 11-34.
Gissler, C., Peer, A., Band, S., Bender, J., Teschner, M.
(2019). Interlinked SPH Pressure Solvers for Strong
Fluid - Rigid Coupling. ACM Transactions on
Graphics, 38(1), article no. 5: 1-13.
Ihmsen, M., Wahl, A., Teschner, M.(2013). A Lagrangian
Framework for Simulating Granular Material with High
Detail. Computers&Graphics.37(7):800-808
Libersky, L.D., Petschek, A.G. (1990). Smooth Particle
Hydrodynamics with Strength of Materials, Advances
in the Free Lagrange Method. Lecture Notes in Physics.
Vol. 395. pp. 248โ257. doi:10.1007/3-540-54960-
9_58. ISBN 978-3-540-54960-4.
Libersky, L.D., Petschek, A.G. Carney, T.C. Hipp, J.R.
Allahdadi, High, F.A (1993). Strain Lagrangian
hydrodynamics: a three-dimensional SPH code for
dynamic material response. J. Comput. Phys. 109 (1):
67โ75. Bibcode:1993JCoPh.109...67L. doi:10.1006/
jcph.1993.1199.
Das, R., Cleary, P.W. (2010). Application of SPH for
modelling heat transfer and residual stress generation in
arc welding. Material Science Forum. 654-656.
Eivani, A.R., Vafaeenezhad, H., Jafarian, H.R., Zhou & J.
(2021). A novel approach to determine residual stress
field during FSW of AZ91 Mg alloy using combined
smoothed particle hydrodynamics/neuro-fuzzy
computations and ultrasonic testing. Journal of
Magnesium and Alloys, 9(4),1304-1328.
Ghaรฏtanellis, A., Violeau, D., Ferrand,M., Abderrezzak,
K.A.K., Leroy, A., Joly, A. (2018) A SPH elastic-
viscoplastic model for granular flows and bed-load
transport. Advances in Water Resources, Volume 111,
p. 156-173.
Holmes, D.W., Williams, J.R., Tilke, P., Leonardi, C.R..
(2016). Characterizing flow in oil reservoir rock using
SPH: absolute permeability. Computational Particle
Mechanics. Volume 3, pages141โ154
Koschier, D., Bender, J., Solenthaler, B. and Teschner, M.
(2022), A Survey on SPH Methods in Computer
Graphics. Computer Graphics Forum, 41: 737-760.
https://doi.org/10.1111/cgf.14508
Liu, Z., Xiu, L., Wu, J., Lv, G. & Ma, J. (2019). Numerical
simulation on residual stress eliminated by shot peening
using SPH method. Fusion Engineering and Design,
147, doi.org/10.1016/j.fusengdes.2019.06.004.
Nguyen, C.T., Nguyen, C.T., Bui, H.H. et al. (2017). A new
SPH-based approach to simulation of granular flows
using viscous damping and stress regularisation.
Landslides 14, 69โ81. https://doi.org/10.1007/s10346-
016-0681-y
Saleh, M., Luzin, V. & Spencer, K. (2014). Analysis of the
residual stress and bonding mechanism in the cold
spray technique using experimental and numerical
methods. Surface and Coatings Technology, 252, 15-
28.
Pan, K., IJzermans, R.H.A., Jones, B.D., Thyagarajan, A.,
van Beest, B.W.H. & Williams, J.R. (2016).
Application of the SPH method to solitary wave impact
on an offshore platform. Computational Part. Mech., 3,
155-166.
Holmes, D.W., Williams, J.R., Tilke, P. & Leonardi, C.R..
(2016). Characterizing flow in oil reservoir rock using
SPH: absolute permeability. Computational Part.
Mech., 3, 141-154.
Mรผller M., Charypar D., Gross M.(2003) Particle based
fluid simulation for interactive applications. In
SCAโ03: Proceedings of the 2003 ACM SIGGRAPH
/Eurographics symposium on Computer animation
(Aire-la-Ville, Switzerland, Switzerland, 2003),
Eurographics Association, pp. 154โ159. 2, 3, 4.