Alahi, A., Ramanathan, V., and Fei-Fei, L. (2014). Socially-
aware large-scale crowd forecasting. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2203–2210.
Allied-Market-Research (2019). Mobile logistic robot -
market size and industry.
Borenstein, J. and Koren, Y. (1991). The vector field
histogram-fast obstacle avoidance for mobile robots.
IEEE Transactions on Robotics and Automation,
7(3):278–288.
Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Real-
time multi-person 2d pose estimation using part affin-
ity fields. In IEEE conference on computer vision and
pattern recognition, pages 7291–7299.
Charalampous, K., Kostavelis, I., and Gasteratos, A. (2017).
Recent trends in social aware robot navigation: A sur-
vey. Robotics and Autonomous Systems, 93:85–104.
Chen, C., Liu, Y., Kreiss, S., and Alahi, A. (2019). Crowd-
robot interaction: Crowd-aware robot navigation with
attention-based deep reinforcement learning. In In-
ternational Conference on Robotics and Automation,
pages 6015–6022. IEEE.
Chung, S.-Y. and Huang, H.-P. (2011). Predictive naviga-
tion by understanding human motion patterns. In-
ternational Journal of Advanced Robotic Systems,
8(1):3.
DR (2019). Hospital sætter robotter for millioner i garagen:
Kunne ikke færdes blandt mennesker.
Fox, D., Burgard, W., and Thrun, S. (1997). The dy-
namic window approach to collision avoidance. IEEE
Robotics & Automation Magazine, 4(1):23–33.
Fragapane, G., Hvolby, H.-H., Sgarbossa, F., and Strandha-
gen, J. O. (2020). Autonomous mobile robots in hos-
pital logistics. In IFIP International Conference on
Advances in Production Management Systems, pages
672–679. Springer.
Guimar
˜
aes, R. L., Oliveira, A. S. d., Fabro, J. A., Becker, T.,
and Brenner, V. A. (2016). Ros navigation: Concepts
and tutorial. In Robot Operating System (ROS), pages
121–160. Springer.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107.
Helbing, D. and Molnar, P. (1995). Social force model for
pedestrian dynamics. Physical review E, 51(5):4282.
Henry, P., Vollmer, C., Ferris, B., and Fox, D. (2010).
Learning to navigate through crowded environments.
In IEEE International Conference on Robotics and
Automation, pages 981–986. IEEE.
Juel, W. K., Haarslev, F., Kr
¨
uger, N., and Bodenhagen, L.
(2020). An integrated object detection and tracking
framework for mobile robots. In International Con-
ference on Informatics in Control, Automation and
Robotics, pages 513–520. SCITEPRESS Digital Li-
brary.
Kitani, K. M., Ziebart, B. D., Bagnell, J. A., and Hebert, M.
(2012). Activity forecasting. In European conference
on computer vision, pages 201–214. Springer.
Kollakidou, A., Naik, L., Palinko, O., and Bodenhagen, L.
(2021). Enabling robots to adhere to social norms by
detecting f-formations. In IEEE International Confer-
ence on Robot & Human Interactive Communication,
pages 110–116. IEEE.
Kuhn, H. W. (1955). The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly,
2(1-2):83–97.
Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H.,
Shafiei, M., Seidel, H.-P., Xu, W., Casas, D., and
Theobalt, C. (2017). VNect: Real-time 3D human
pose estimation with a single RGB camera. ACM
Transactions on Graphics (TOG), 36(4):1–14.
R
¨
osmann, C., Hoffmann, F., and Bertram, T. (2017). Kino-
dynamic trajectory optimization and control for car-
like robots. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5681–5686.
IEEE.
Thompson, S., Horiuchi, T., and Kagami, S. (2009). A
probabilistic model of human motion and navigation
intent for mobile robot path planning. In International
Conference on Autonomous Robots and Agents, pages
663–668. IEEE.
Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose
estimation via deep neural networks. In IEEE con-
ference on computer vision and pattern recognition,
pages 1653–1660.
Unhelkar, V. V., P
´
erez-D’Arpino, C., Stirling, L., and Shah,
J. A. (2015). Human-robot co-navigation using an-
ticipatory indicators of human walking motion. In
IEEE International Conference on Robotics and Au-
tomation, pages 6183–6190. IEEE.
Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., and
Shao, L. (2021). Deep 3d human pose estimation: A
review. Computer Vision and Image Understanding,
210:103225.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric.
Yang, C.-T., Zhang, T., Chen, L.-P., and Fu, L.-C. (2019).
Socially-aware navigation of omnidirectional mobile
robot with extended social force model in multi-
human environment. In IEEE International Confer-
ence on Systems, Man and Cybernetics, pages 1963–
1968. IEEE.
Yen, P.-Y., Kellye, M., Lopetegui, M., Saha, A., Loversidge,
J., Chipps, E. M., Gallagher-Ford, L., and Buck, J.
(2018). Nurses’ time allocation and multitasking of
nursing activities: a time motion study. In AMIA An-
nual Symposium, volume 2018, page 1137. American
Medical Informatics Association.
Zhou, X., Wang, D., and Kr
¨
ahenb
¨
uhl, P. (2019). Objects as
points.
Zimmermann, C., Welschehold, T., Dornhege, C., Burgard,
W., and Brox, T. (2018). 3D human pose estimation in
RGBD images for robotic task learning. In IEEE In-
ternational Conference on Robotics and Automation,
pages 1986–1992. IEEE.
HUCAPP 2023 - 7th International Conference on Human Computer Interaction Theory and Applications
228