center, who helped to provide consensus opinion on
the regions of prostate anatomy. We are also thank-
ful to the support staff (Ms. Tribene & Mr. Garcia)
who helped with data organization. We also thank
the Applied Signal Processing and Machine Learning
Research Group of USFQ for providing the comput-
ing infrastructure (NVidia DGX workstation) to im-
plement and execute the developed source code, re-
spectively.
REFERENCES
Aldoj, N., Biavati, F., Michallek, F., Stober, S., and Dewey,
M. (2020). Automatic prostate and prostate zones
segmentation of magnetic resonance images using
DenseNet-like u-net. Scientific Reports, 10(1).
Calisto, M. B. and Lai-Yuen, S. K. (2020). Adaen-net: An
ensemble of adaptive 2d–3d fully convolutional net-
works for medical image segmentation. Neural Net-
works, 126:76–94.
Calisto, M. B. and Lai-Yuen, S. K. (2021). Emonas-net:
Efficient multiobjective neural architecture search us-
ing surrogate-assisted evolutionary algorithm for 3d
medical image segmentation. Artificial Intelligence in
Medicine, 119:102154.
Centers for Disease Control and Prevention (2022). What
is screening for prostate cancer?
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L.,
Yuille, A. L., and Zhou, Y. (2021). Transunet: Trans-
formers make strong encoders for medical image seg-
mentation.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Min-
derer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. CoRR,
abs/2010.11929.
Ehman, E. C., Johnson, G. B., Villanueva-Meyer, J. E., Cha,
S., Leynes, A. P., Larson, P. E. Z., and Hope, T. A.
(2017). Pet/mri: Where might it replace pet/ct? Jour-
nal of Magnetic Resonance Imaging, 46:1247–1262.
Eklund, M., J
¨
aderling, F., Discacciati, A., Bergman, M.,
Annerstedt, M., Aly, M., Glaessgen, A., Carlsson,
S., Gr
¨
onberg, H., and Nordstr
¨
om, T. (2021). MRI-
targeted or standard biopsy in prostate cancer screen-
ing. New England Journal of Medicine, 385(10):908–
920.
Eldred-Evans, D., Tam, H., Sokhi, H., Padhani, A. R.,
Winkler, M., and Ahmed, H. U. (2020). Rethinking
prostate cancer screening: could MRI be an alternative
screening test? Nature Reviews Urology, 17(9):526–
539.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai,
B., Liu, T., Wang, X., Wang, G., Cai, J., and Chen,
T. (2018). Recent advances in convolutional neural
networks. Pattern Recognition, 77:354–377.
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.,
and Xu, D. (2022). Swin unetr: Swin transformers for
semantic segmentation of brain tumors in mri images.
Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko,
A., Landman, B., Roth, H., and Xu, D. (2021). Unetr:
Transformers for 3d medical image segmentation.
Huang, S., Li, J., Xiao, Y., Shen, N., and Xu, T. (2022).
RTNet: Relation transformer network for diabetic
retinopathy multi-lesion segmentation. IEEE Trans-
actions on Medical Imaging, pages 1–1.
Katzung, B. G. (2017). Basic and Clinical Pharmacology
14th Edition, page 948. McGraw Hill Professional.
Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A. P.,
and Schnabel, J. A. (2019). Left-ventricle quantifi-
cation using residual u-net. In Statistical Atlases and
Computational Models of the Heart. Atrial Segmen-
tation and LV Quantification Challenges, pages 371–
380. Springer International Publishing.
Li, J., Wang, W., Chen, C., Zhang, T., Zha, S., Wang, J., and
Yu, H. (2022). Transbtsv2: Towards better and more
efficient volumetric segmentation of medical images.
Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2021).
A survey of convolutional neural networks: Analy-
sis, applications, and prospects. IEEE Transactions
on Neural Networks and Learning Systems, pages 1–
21.
Lundervold, A. S. and Lundervold, A. (2019). An overview
of deep learning in medical imaging focusing on MRI.
Zeitschrift f
¨
ur Medizinische Physik, 29(2):102–127.
Matsoukas, C., Haslum, J., S
¨
oderberg, M., and Smith, K.
(2021). Is it time to replace cnns with transform-
ers for medical images? arxiv 2021. arXiv preprint
arXiv:2108.09038.
Naji, L., Randhawa, H., Sohani, Z., Dennis, B., Lautenbach,
D., Kavanagh, O., Bawor, M., Banfield, L., and Pro-
fetto, J. (2018). Digital rectal examination for prostate
cancer screening in primary care: A systematic review
and meta-analysis. The Annals of Family Medicine,
16(2):149–154.
Radboud University Medical Centre (2017). Prostatex-
grand challenge. [Accessed 07-May-2022].
Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Lev-
skaya, A., and Shlens, J. (2019). Stand-alone self-
attention in vision models. CoRR, abs/1906.05909.
Rawla, P. (2019a). Epidemiology of prostate cancer. World
Journal of Oncology, 10(2):63–89.
Rawla, P. (2019b). Epidemiology of prostate cancer. World
Journal of Oncology, 10:63–89.
Razzak, M. I., Naz, S., and Zaib, A. (2017). Deep learning
for medical image processing: Overview, challenges
and future.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Tian, Z., Liu, L., Zhang, Z., and Fei, B. (2018). PSNet:
prostate segmentation on MRI based on a convolu-
tional neural network. Journal of Medical Imaging,
5(2):1 – 6.
Ushinsky, A., Bardis, M., Glavis-Bloom, J., Uchio, E.,
Chantaduly, C., Nguyentat, M., Chow, D., Chang,
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
606