Aboutalib, S. S., Mohamed, A. A., Berg, W. A., Zuley, M.
L., Sumkin, J. H., & Wu, S. (2018). Deep learning to
distinguish recalled but benign mammography images
in breast cancer screening. Clinical Cancer Research,
24(23), 5902–5909. https://doi.org/10.1158/1078-
0432. CCR-18-1115
Agarwal, R., Diaz, O., Lladó, X., Yap, M. H., & Martí, R.
(2019). Automatic mass detection in mammograms
using deep convolutional neural networks. Journal of
Medical Imaging, 6(3), 031409. https://doi.org/10
.1117/1.JMI.6.3.031409
Azzeh, M., Nassif, A. B., & Minku, L. L. (2017). An
empirical evaluation of ensemble adjustment methods
for analogy-based effort estimation. Journal of Systems
and Software, 103, 36–52. https://doi.org/10.
1016/j.jss.2015.01.028
Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep
Convolutional Neural Networks for breast cancer
screening. Computer Methods and Programs in
Biomedicine, 157, 19–30. https://doi.org/10.1016/J.
CMPB.2018.01.011
Coleman, C. (2017). Early Detection and Screening for
Breast Cancer. Seminars in Oncology Nursing, 33(2),
141–155. https://doi.org/10.1016/J.SONCN.2017.02.
009
Eric A. Scuccimarra. (2018). DDSM Mammography.
Kaggle.
Fei-Fei, L., Deng, J., & Li, K. (2010). ImageNet:
Constructing a large-scale image database. Journal of
Vision, 9(8), 1037–1037. https://doi.org/10.1167/9
.8.1037
García-Lapresta, J. L., & Martínez-Panero, M. (2002).
Borda Count Versus Approval Voting: A Fuzzy
Approach. Public Choice 2002 112:1, 112(1), 167–184.
https://doi.org/10.1023/A:1015609200117
Hunter, J. D. (2007). Matplotlib: A 2D graphics
environment. Computing in Science and Engineering,
9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
Idri, A., & Abnane, I. (2017). Fuzzy Analogy Based Effort
Estimation: An Empirical Comparative Study. IEEE
CIT 2017 - 17th IEEE International Conference on
Computer and Information Technology, 114–121.
https://doi.org/10.1109/CIT.2017.29
Idri, A., Abnane, I., & Abran, A. (2018). Evaluating Pred(p)
and standardized accuracy criteria in software
development effort estimation. Journal of Software:
Evolution and Process, 30(4), e1925.
https://doi.org/10.1002/SMR.1925
Idri, A., Hosni, M., & Abran, A. (2016). Improved
estimation of software development effort using
Classical and Fuzzy Analogy ensembles. Applied Soft
Computing, 49, 990–1019.
https://doi.org/10.1016/J.ASOC.2016.08.012
Jelihovschi, E., Faria, J. C., & Allaman, I. B. (2014).
ScottKnott: A Package for Performing the Scott-Knott
Clustering Algorithm in R. TEMA (São Carlos), 15(1),
003. https://doi.org/10.5540/TEMA.2014.015.01.0003
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for
stochastic optimization. 3rd International Conference
on Learning Representations, ICLR 2015 - Conference
Track Proceedings, 1–15.
Lahmar, C., & Idri, A. (2022). On the value of deep learning
for diagnosing diabetic retinopathy. Health and
Technology, 12(1), 89–105. https://doi.org/10.10
07/S12553-021-00606-X/FIGURES/11
Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K.,
Gorovoy, M., & Rubin, D. L. (2017). A curated
mammography data set for use in computer-aided
detection and diagnosis research. Scientific Data 2017
4:1, 4(1), 1–9. https://doi.org/10.1038/sdata.2017.177
McAuliffe, M. J., Lalonde, F. M., McGarry, D., Gandler,
W., Csaky, K., & Trus, B. L. (2001). Medical image
processing, analysis & visualization in clinical
research. Proceedings of the IEEE Symposium on
Computer-Based Medical Systems, 381–388.
https://doi.org/10.1109/CBMS.2001.941749
Ottoni, A. L. C., Nepomuceno, E. G., de Oliveira, M. S., &
de Oliveira, D. C. R. (2019). Tuning of reinforcement
learning parameters applied to SOP using the Scott–
Knott method. Soft Computing, 24(6), 4441–4453.
https://doi.org/10.1007/S00500-019-04206-W
Pedregosa, F., Michel, V., Grisel OLIVIERGRISEL, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J.,
Cournapeau, D., Pedregosa, F., Varoquaux, G.,
Gramfort, A., Thirion, B., Grisel, O., Dubourg, V.,
Passos, A., Brucher, M., Perrot andÉdouardand, M.,
Duchesnay, A., & Duchesnay EDOUARD
DUCHESNAY, Fré. (2011). Scikit-learn: Machine
Learning in Python. Journal of Machine Learning
Research, 12, 2825–2830. https://doi.org/10.5555/1
953048
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R.,
Geselowitz, A., Greer, T., ter Haar Romeny, B.,
Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive
histogram equalization and its variations. Computer
Vision, Graphics, and Image Processing, 39(3), 355–
368. https://doi.org/10.1016/S0734-189X(87)80186-X
Reback, J., jbrockmendel, McKinney, W., Bossche, J. van
den, Augspurger, T., Cloud, P., Hawkins, S., Roeschke,
M., gfyoung, Sinhrks, Klein, A., Hoefler, P., Petersen,
T., Tratner, J., She, C., Ayd, W., Naveh, S., Darbyshire,
J., Garcia, M., … Seabold, S. (2022). pandas-
dev/pandas: Pandas 1.4.1. https://doi.org/10.5281/Z
ENODO.6053272
Saranyaraj, D., Manikandan, M., & Maheswari, S. (2020).
A deep convolutional neural network for the early
detection of breast carcinoma with respect to hyper-
parameter tuning. Multimedia Tools and Applications,
79(15–16), 11013–11038. https://doi.org/10.1007/S110
42-018-6560-X/TABLES/12
Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E.,
McBride, R., & Sieh, W. (2019). Deep Learning to
Improve Breast Cancer Detection on Screening
Mammography. Scientific Reports, 9(1). https://
doi.org/10.1038/S41598-019-48995-4
The American Cancer Society medical and editorial content
team. (2022, January 12). Key Statistics for Breast
Cancer.