REFERENCES
Alkroosh, I. and Nikraz, H. (2011) ‘Correlation of pile
axial capacity and CPT data using gene expression
programming’, Geotechnical and Geological
Engineering, 29(5), pp. 725–748.
Bonney, M. T., He, Y. and Myint, S. W. (2020)
‘Contextualizing the 2019–20 kangaroo island
bushfires: Quantifying landscape-level influences on
past severity and recovery with landsat and google earth
engine’, Remote Sensing, 12(23), 3942. doi: 10.3390/
rs12233942.
Bourman, R. P., Murray-Wallace, C. V and Harvey, N.
(2016) Coastal Landscapes of South Australia.
University of Adelaide Press.
Breiman, L. E. O. (2001) ‘Random Forests’, pp. 5–32.
Bui, Q. T. (2019) ‘Metaheuristic algorithms in optimizing
neural network: a comparative study for forest fire
susceptibility mapping in Dak Nong, Vietnam’,
Geomatics, Natural Hazards and Risk, 10(1), pp. 136–
150. doi: 10.1080/19475705.2018.1509902.
Dorji, S. and Ongsomwang, S. (2017) ‘Wildfire
Susceptibility Mapping in Bhutan Using
Geoinformatics Technology’, Suranaree Journal of
Science and Technology, 24(2), pp. 213–237.
Eskandari, S., Miesel, J. R. and Pourghasemi, H. R. (2020)
‘The temporal and spatial relationships between
climatic parameters and fire occurrence in northeastern
Iran’, Ecological Indicators, 118(June), p. 106720. doi:
10.1016/j.ecolind.2020.106720.
Ferreira, C. (2001) ‘Gene expression programming: a new
adaptive algorithm for solving problems’, arXiv
preprint cs/0102027.
Gholamnia, K. et al. (2020) ‘Comparisons of diverse
machine learning approaches for wildfire susceptibility
mapping’, Symmetry, 12(4), 604. doi: 10.3390/
SYM12040604.
Ghorbanzadeh, O. et al. (2019) ‘Spatial prediction of
wildfire susceptibility using field survey gps data and
machine learning approaches’, Fire, 2(3), pp. 1–23. doi:
10.3390/fire2030043.
Hong, H. et al. (2017) ‘A comparative assessment between
linear and quadratic discriminant analyses (LDA-QDA)
with frequency ratio and weights-of-evidence models
for forest fire susceptibility mapping in China’, Arabian
Journal of Geosciences, 10(7), 167. doi: 10.1007/s
12517-017-2905-4.
Hong, H., Jaafari, A. and Zenner, E. K. (2019) ‘Predicting
spatial patterns of wildfire susceptibility in the
Huichang County, China: An integrated model to
analysis of landscape indicators’, Ecological Indicators,
101, pp. 878–891. doi: 10.1016/j.ecolind.2019.01.056.
Hosseini, M. and Lim, S. (2021) ‘Gene expression
programming and ensemble methods for bushfire
susceptibility mapping: a case study of Victoria,
Australia’, Geomatics, Natural Hazards and Risk, 12,
pp. 2367–2386. doi: 10.1080/19475705.2021.1964618.
Hosseini, M. and Lim, S. (2022) ‘Gene expression
programming and data mining methods for bushfire
susceptibility mapping in New South Wales, Australia’,
Natural Hazards, 113(2), pp. 1349–1365. doi:
10.1007/s11069-022-05350-7.
Jaafari, A. et al. (2019) ‘Wildfire Probability Mapping:
Bivariate vs. Multivariate Statistics’, Remote Sensing,
11(6), 618. doi: 10.3390/rs11060618.
Jaafari, A., Gholami, D. M. and Zenner, E. K. (2017) ‘A
Bayesian modeling of wildfire probability in the Zagros
Mountains, Iran’, Ecological Informatics, 39, pp. 32–
44. doi: 10.1016/j.ecoinf.2017.03.003.
Jaafari, A. and Pourghasemi, H. R. (2019) ‘Factors
Influencing Regional-Scale Wildfire Probability in
Iran’, in Spatial Modeling in GIS and R for Earth and
Environmental Sciences. Elsevier, pp. 607–619. doi:
10.1016/b978-0-12-815226-3.00028-4.
Jain, P. et al. (2020) ‘A review of machine learning
applications in wildfire science and management
‘Environmental Reviews, 28(4), pp.478-505. doi:
10.1139/er-2020-0019.
Leuenberger, M. et al. (2018) ‘Environmental Modelling &
Software Wild fire susceptibility mapping: Deterministic
vs. stochastic approaches’, Environmental Modelling
and Software, 101, pp. 194–203.
MODIS Fire, (2020). ‘MODIS Active Fire and Burned Area
Products - Home’, www.modis-fire.umd.edu. Accessed
16 Nov. 2022.
Peace, M. and Mills, G. (2012) ‘A case study of the 2007
Kangaroo Island bushfires’, CAWCR Technical Report
No. 053, pp. 58. Available at: http://www.
cawcr.gov.au/technical-reports/CTR_053.pdf.
Razavi-Termeh, S. V., Sadeghi-Niaraki, A. and Choi, S. M.
(2020) ‘Ubiquitous GIS-based forest fire susceptibility
mapping using artificial intelligence methods’, Remote
Sensing, 12(10). doi: 10.3390/rs12101689.
Tehrany, M. S. et al. (2019) ‘A novel ensemble modeling
approach for the spatial prediction of tropical forest fire
susceptibility using LogitBoost machine learning
classifier and multi-source geospatial data’, Theoretical
and Applied Climatology, 137(1–2), pp. 637–653. doi:
10.1007/s00704-018-2628-9.
Tonini, M. et al. (2020) ‘A machine learning-based
approach for wildfire susceptibility mapping. The case
study of the liguria region in italy’, Geosciences
(Switzerland), 10(3). doi: 10.3390/geosciences
10030105.
Valdez, M. C. et al. (2017) ‘Modelling the spatial
variability of wildfire susceptibility in Honduras using
remote sensing and geographical information systems’,
Geomatics, Natural Hazards and Risk, 8(2), pp. 876–
892. doi: 10.1080/19475705.2016.1278404.
Zhang, G., Wang, M. and Liu, K. (2019) ‘Forest Fire
Susceptibility Modeling Using a Convolutional Neural
Network for Yunnan Province of China’, International
Journal of Disaster Risk Science, 10(3), pp. 386–403.
doi: 10.1007/s13753-019-00233-1.
Zhang, Y., Lim, S. and Sharples, J. J. (2016) ‘Modelling
spatial patterns of wildfire occurrence in South-Eastern
Australia’, Geomatics, Natural Hazards and Risk, 7(6),
pp. 1800–1815. doi: 10.1080/19475705.2016.1155501.
Bushfire Susceptibility Mapping Using Gene Expression Programming and Machine Learning Methods: A Case Study of Kangaroo Island,