u-szeged.hu/
∼
ferenc/papers/UnifiedBugDataSet/. Ac-
cessed: Feb. 04, 2023.
Ferenc, R., Toth, Z., Lad
´
anyi, G., Siket, I., and Gyim
´
othy,
T. (2020). A public unified bug dataset for java and
its assessment regarding metrics and bug prediction.
Software Quality Journal, 28.
Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and
Figueiredo, E. (2016). A Review-Based Comparative
Study of Bad Smell Detection Tools. In Proceedings
of the 20th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’16,
New York, NY, USA. Association for Computing Ma-
chinery.
Fowler, M. (2019). Refactoring - Improving the Design of
Existing Code. Addison-Wesley, Amsterdam.
Gronback, R. C. (2003). Software Remodeling: Improving
Design and Implementation Quality.
Guggulothu, T. and Abdul Moiz, S. (2019). An Approach
to Suggest Code Smell Order for Refactoring, pages
250–260.
Habra, N. and Lopez Martin, M.-A. (2006). On the use
of Measurement in Software Restructuring Research.
In Duchien, L., D’Hondt, M., and Mens, T., editors,
Proceedings of the International ERCIM Workshop on
Software Evolution (2006), pages 81–89. Publication
editors : Laurence Duchien, Maja D’Hondt and Tom
Mens.
Hall, T., Zhang, M., Bowes, D., and Sun, Y. (2013). Code
Bad Smell Detector. https://sourceforge.net/projects/
cbsdetector/. Accessed: Feb. 04, 2023.
Hall, T., Zhang, M., Bowes, D., and Sun, Y. (2014). Some
Code Smells Have a Significant but Small Effect on
Faults. ACM Trans. Softw. Eng. Methodol., 23(4).
Intooitus srl (2012). inFusion Hydrogen. https:
//marketplace.eclipse.org/content/infusion-hydrogen.
Accessed: Feb. 04, 2023.
Intooitus srl (2013). inCode Helium. https://marketplace.
eclipse.org/content/incode-helium. Accessed: Feb.
04, 2023.
JetBrains (2022). List of Java Inspections. https://www.
jetbrains.com/help/idea/list-of-java-inspections.html.
Accessed: Feb. 04, 2023.
Khrishe, Y. and Alshayeb, M. (2016). An empirical study
on the effect of the order of applying software refac-
toring. In 2016 7th International Conference on Com-
puter Science and Information Technology (CSIT),
pages 1–4.
K
¨
uhl, S. J., Schneider, A., Kestler, H. A., Toberer, M.,
K
¨
uhl, M., and Fischer, M. R. (2019). Investigating
the self-study phase of an inverted biochemistry class-
room – collaborative dyadic learning makes the differ-
ence. BMC Medical Education, 19(1):64.
Lacerda, G., Petrillo, F., Pimenta, M., and Gu
´
eh
´
eneuc, Y. G.
(2020). Code smells and refactoring: A tertiary sys-
tematic review of challenges and observations. Jour-
nal of Systems and Software, 167:110610.
M
¨
antyl
¨
a, M. V. and Lassenius, C. (2006). Subjec-
tive Evaluation of Software Evolvability Using Code
Smells: An Empirical Study. Empirical Softw. Engg.,
11(3):395–431.
Mazinanian, D., Tsantalis, N., Stein, R., and Valenta, Z.
(2016). JDeodorant: Clone Refactoring. In 2016
IEEE/ACM 38th International Conference on Soft-
ware Engineering Companion (ICSE-C), pages 613–
616.
Mehta, Y., Singh, P., and Sureka, A. (2018). Analyzing
Code Smell Removal Sequences for Enhanced Soft-
ware Maintainability. In 2018 Conference on Informa-
tion and Communication Technology (CICT), pages
1–6.
Micro Focus (2023). Together: Visual Modeling Soft-
ware. https://www.microfocus.com/en-us/products/
together. Accessed: Feb. 04, 2023.
Miller, R. B. (1968). Response Time in Man-Computer
Conversational Transactions. In Proceedings of the
December 9-11, 1968, Fall Joint Computer Confer-
ence, Part I, AFIPS ’68 (Fall, part I), page 267–277,
New York, NY, USA. Association for Computing Ma-
chinery.
Murphy-Hill, E. and Black, A. P. (2010). An Interactive
Ambient Visualization for Code Smells. In Proceed-
ings of the 5th International Symposium on Software
Visualization, SOFTVIS ’10, page 5–14, New York,
NY, USA. Association for Computing Machinery.
Nielsen, J. (1993). Chapter 5 – Usability Heuristics.
Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto,
R., and De Lucia, A. (2018). A large-scale empirical
study on the lifecycle of code smell co-occurrences.
Information and Software Technology, 99:1–10.
Parnin, C., G
¨
org, C., and Nnadi, O. (2008). A catalogue
of lightweight visualizations to support code smell in-
spection. pages 77–86.
Pessoa, T., Brito e Abreu, F., Monteiro, M., and Bryton, S.
(2012). An Eclipse Plugin to Support Code Smells
Detection.
PMD (2023). PMD - An extensible cross-language static
code analyzer. https://pmd.github.io/. Accessed: Feb.
04, 2023.
Rutar, N., Almazan, C. B., and Foster, J. S. (2004). A com-
parison of bug finding tools for Java. 15th Interna-
tional Symposium on Software Reliability Engineer-
ing, pages 245–256.
Salehie, M., Li, S., and Tahvildari, L. (2006). A
Metric-Based Heuristic Framework to Detect Object-
Oriented Design Flaws. volume 2006, pages 159–
168.
Sharma, T. and Spinellis, D. (2017). A Survey on Software
Smells. Journal of Systems and Software, 138.
Simon, F., Steinbruckner, F., and Lewerentz, C. (2001).
Metrics Based Refactoring.
Vidal, S., Marcos, C., and Diaz-Pace, A. (2014). An ap-
proach to prioritize code smells for refactoring. Auto-
mated Software Engineering, 23.
Zhang, M., Baddoo, N., Wernick, P., and Hall, T. (2008).
Improving the Precision of Fowler’s Definitions of
Bad Smells. pages 161 – 166.
ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering
76