Rabiner, L. R. (1989). A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257–286.
Ramati, M. and Shahar, Y. (2010). Irregular-time bayesian
networks. Conference on Uncertainty in Artificial In-
telligence, UAI, 26.
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian
Processes for Machine Learning. MIT Press.
Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. (2019).
Latent odes for irregularly-sampled time series. Ad-
vances in Neural Information Processing Systems, 32.
Sass, Andreas Udo, Esatbeyoglu, E., and Fischer, T.
(2019). Monitoring of powertrain component aging
using in-vehicle signals. Diagnose in mechatronis-
chen Fahrzeugsystemen XIII, pages 15–28.
Sass, Andreas Udo, Esatbeyoglu, E., and Iwwerks, T.
(2020). Signal pre-selection for monitoring and pre-
diction of vehicle powertrain component aging. Pro-
ceedings of the 16th European Automotive Congress,
pages 519–524.
Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O.
(2020). Green ai. Communications of the ACM,
63(12):54–63.
Shih, S.-Y., Sun, F.-K., and Lee, H.-y. (2019). Temporal
pattern attention for multivariate time series forecast-
ing. Machine Learning, 108(8-9):1421–1441.
Shukla, S. and Marlin, B. (2019). Interpolation-prediction
networks for irregularly sampled time series. In-
ternational Conference on Learning Representations,
ICLR, 7.
Shukla, S. N. and Marlin, B. M. (2021). Multi-time atten-
tion networks for irregularly sampled time series. In-
ternational Conference on Learning Representations,
ICLR, 9.
Silva, I., Moody, G., Scott, D. J., Celi, L. A., and Mark,
R. G. (2012). Predicting in-hospital mortality of icu
patients: The physionet/computing in cardiology chal-
lenge 2012. In 2012 Computing in Cardiology, pages
245–248.
Song, H., Rajan, D., Thiagarajan, J. J., and Spanias, A.
(2018). Attend and diagnose: Clinical time series
analysis using attention models. Proceedings of the
AAAI conference on artificial intelligence, 32(1).
Sun, C., Hong, S., Song, M., and Li, H. (2020). A review of
deep learning methods for irregularly sampled medi-
cal time series data. arXiv preprint arXiv:2010.12493.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. Proceedings of the IEEE conference
on computer vision and pattern recognition.
Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen,
E., Xu, Z., and Guyon, I. (2021). Bayesian optimiza-
tion is superior to random search for machine learn-
ing hyperparameter tuning: Analysis of the black-box
optimization challenge 2020. NeurIPS 2020 Compe-
tition and Demonstration Track, pages 3–26.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. Advances in Neural
Information Processing Systems, 30.
Vox, C., Broneske, D., Piewek, J., Sass, A. U., and Saake,
G. (2022). Integer time series compression for holistic
data analytics in the context of vehicle sensor data. In
International Conference on Connected Vehicle and
Expo (ICCVE), pages 1–7.
Weerakody, P. B., Wong, K. W., Wang, G., and Ela, W.
(2021). A review of irregular time series data handling
with gated recurrent neural networks. Neurocomput-
ing, 441(7):161–178.
Wu, S., Liu, S., Sohn, S., Moon, S., Wi, C.-I., Juhn, Y.,
and Liu, H. (2018). Modeling asynchronous event se-
quences with rnns. Journal of biomedical informatics,
83:167–177.
Yang, B., Sun, S., Li, J., Lin, X., and Tian, Y. (2019). Traffic
flow prediction using lstm with feature enhancement.
Neurocomputing, 332(4):320–327.
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. Advances in Neural Information Processing Sys-
tems, 30.
APPENDIX
Table 4: Classification Benchmark I.
Best hyperparameters for the PhysioNet-a dataset
ITTS: n-blocks=3, bottleneck-channels=2, n-filters=12, kernel-
sizes=[4, 8, 16], activation=hardswish, out-activation=sigmoid, n-
embeddings=15, linear-hidden=[256], use-residual=True, min-max-
scaling=False; GRUTS: rnn-hidden=55, rnn-depth=5, activation=gelu,
linear-hidden=[65, 33], n-embeddings=69, min-max-scaling=False
Table 5: Classification Benchmark II.
Best hyperparameters for the PhysioNet-b dataset
ITTS: n-blocks=1, bottleneck-channels=12, n-filters=16, kernel-
sizes=[4, 8, 16], activation=tanh, out-activation=linear, n-
embeddings=20, linear-hidden=[128], use-residual=True, min-
max-scaling=False; GRUTS: rnn-hidden=235, rnn-depth=7,
activation=tanh, linear-hidden=[424], n-embeddings=176, min-
max-scaling=False
Table 6: Regression Benchmark.
Best hyperparameters for the VECA dataset
Phased-LSTM: n-units=256, use-peepholes=True, leak=0.001,
period-init-max=1000.0; GRU-D: n-units=120, dropout=0.0,
recurrent-dropout=0.01; IPNet: n-units=60, dropout=0.0, recurrent-
dropout=0.1, imputation-stepsize=1.0, reconst-fraction=0.01; SeFT:
n-phi-layers=1, phi-width=165, phi-dropout=0.0, n-psi-layers=3,
psi-width=28, psi-latent-width=121, dot-prod-dim=90, n-heads=7,
attn-dropout=0.1, latent-width=40, n-rho-layers=4, rho-width=24, rho-
dropout=0.0, n-positional-dims=4, max-timescale=100.0; mTAND:
query-steps=196, rec-hidden=94, embed-time=88, num-heads=4,
freq=9, learn-emb=True, regressor-layer-size=134; ITTS: n-
blocks=6, bottleneck-channels=2, n-filters=13, kernel-sizes=[4,
32, 128], activation=relu, out-activation=sigmoid, n-embeddings=1,
linear-hidden=[256], use-residual=True, min-max-scaling=True;
GRUTS: rnn-hidden=64, rnn-depth=5, activation=hardswish, linear-
hidden=[128, 64, 32, 16], n-embeddings=1, min-max-scaling=True
ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
696