ACKNOWLEDGEMENTS 
This research was performed with the support of the 
following programmes and projects: Programa estatal 
de  generación  de  conocimiento  y  fortalecimiento 
científico  y  tecnológico  del  sistema  de  I+D+i, 
subprograma  estatal de  generación de  conocimiento 
del  Ministerio  de  Ciencia  e  Innovación  y  Agencia 
Estatal  de  Investigación,  ref.  PGC2018-097531-B-
I00 (Talenano: Estudio de la eficacia de tecnologías 
alternativas  de  liberación  de  energía  térmica  y 
mecánica  mediante  nanoestructuras  de  óxido  de 
hierro y de oro con aplicación en terapias), as regards 
the  modelling  of  cancer  hyperthermia;  European 
Union’s  Horizon  2020  Research  and  Innovation 
Programme  under  grant  agreement  n.  953134 
(INKplant  project:  Ink-based  hybrid  multi-material 
fabrication  of  next  generation  implants),  as  regards 
the  modelling  of  cell-scaffold  interactions;  and 
Programa de estancias de movilidad de profesores e 
investigadores  en  centros  extranjeros  de  enseñanza 
superior  e  investigación  del  Ministerio  de 
Universidades,  ref.  PRX21/00460  (Ingeniería  de 
tejidos  in silico  facilitada  mediante  microscopía  de 
resonancia magnética), as regards validation strategy. 
REFERENCES 
Aske,  K.C.,  Waugh,  C.A.  (2017).  Expanding  the  3R 
principles:  More  rigour  and  transparency  in  research 
using animals. EMBO Reports, 18(9), 1490-1492. 
Ballesteros Hernando, J., Ramos Gómez, M., Díaz Lantada, 
A. (2019). Modeling Living Cells Within Microfluidic 
Systems  Using  Cellular  Automata  Models.  Scientific 
Reports, 9, 14886. 
Casanova-Carvajal,  O.,  …,  Serrano-Olmedo,  J.J.  (2021). 
The  use  of  silica  microparticles  to  improve  the 
efficiency  of  optical  hyperthermia  (OH). Int. J. Mol. 
Sci., 22, 5091.  
Edelman,  L.B.,  Eddy,  J.A.,  Price,  N.D.  (2010).  In  silico 
models  of  cancer.  Wiley Interdiscip. Rev. Syst. Biol. 
Med., 2(4), 438-459. 
Erkizia, G., Rainer, A., De Juan-Pardo, E. M. & Aldazabal, 
J. (2010). Computer simulation of scaffold degradation. 
Journal of Physics: Conference Series, Surface 
Modifications and Functionalisation of Materials for 
Biomedical Applications, 252, 012004. 
Fais, S.,  Overholtzer,  M. (2018). Cell-in-cell phenomena, 
cannibalism,  and  autophagy:  is  there  a  relationship? 
Cell Death Dis., 9, 95. 
Führer, E., et al. (2017). 3D carbon scaffolds for neural stem 
cell  culture  and  magnetic  resonance  imaging.  Adv. 
Health. Mat., 7(4), 1700915. 
Gardner,  M.  (1970).  Mathematical  games:  The  fantastic 
combinations  of  John  Conway’s  new  solitaire  game 
“life”. Scientific American, 223, 120–123. 
Garijo,  N.,  Manzano,  R.,  Osta,  R.,  Perez,  M.  (2012). 
Stochastic  cellular  automata  model  of  cell  migration, 
proliferation  and  differentiation:  Validation  with in 
vitro cultures  of  muscle  satellite  cells. Theoretical 
Biology, 314, 1–9. 
Geris,  L.  (2013).  Computational modelling in tissue 
engineering, Springer-Verlag Berlin Heidelberg. 
Geris, L., Guyot, Y., Schrooten, J., Papantoniou, I. (2016). 
In  silico  regenerative  medicine:  how  computational 
tools  allow  regulatory  and  financial  challenges  to  be 
addressed  in  a  volatile  market.  Interface Focus,  6, 
20150105. 
Geris,  L.,  Lambrechts,  T.,  Carlier,  A.,  Papantoniou,  I. 
(2018).  The  future  is  digital:  In  silico  tissue 
engineering.  Current Opinion in Biomedical 
Engineering, 6, 92-98. 
Jean-Quartier,  C., Jeanquartier,  F.,  Jurisica,  I., Holzinger, 
A. (2018). In silico cancer research towards 3R. BMC 
cancer, 18(1), 408. 
Khademhosseini,  A.,  Langer,  R.  (2016).  A  decade  of 
progress in tissue engineering. Nat. Protoc., 11, 1775–
1781. 
Keshavarzian, M., Meyer, C.A., Hayenga, H.N. (2019). In 
Silico  Tissue  Engineering:  A  Coupled  Agent-Based 
Finite Element Approach. Tissue Eng Part C Methods, 
25(11), 641-654. 
Ludvigsen,  K.,  Nagaraja,  S.,  Daly,  A.  (2022).  When  is 
software  a  medical  device?  Understanding  and 
determining  the  “intention”  and  requirements  for 
software as a medical device in European Union law. 
European Journal of Risk Regulation, 13(1), 78-93. 
Spencer,  T.J.,  Hidalgo-Bastida,  L.A.,  Cartmell,  S.H., 
Halliday,  L.,  Care,  C.M.  (2013).  In  silico  multi-scale 
model of transport and dynamic seeding in a bone tissue 
engineering perfusion bioreactor. Biotechnol. Bioeng., 
110, 1221-1230 
Vivas,  J.,  Garzón-Alvarado,  D.  &  Cerrolaza,  M.  (2015). 
Modelling  cell  adhesion  and  proliferation:  A  cellular 
automata-based  approach.  Advanced Modelling and 
Simulation in Engineering, Sciences 2, 32. 
Von  Neumann,  J.,  Burks,  A.W.  (1966).  Theory  of  self-
reproducing  automata.  Urbana,  University of Illinois 
Press. 
Wolfram, S. (1984). Universality and complexity in cellular 
automata. Physica, 10D, 1–35. 
Yagawa, Y., Tanigawa, K., Kobayashi, Y., Yamamoto, M. 
(2017).  Cancer  immunity  and  therapy  using 
hyperthermia  with  immunotherapy,  radiotherapy, 
chemotherapy,  and  surgery.  J. Cancer Metastasis 
Treat., 3, 218-230. 
Zhang, M., Boughton, P.,  Rose, B., Soon Lee, C.,  Hong, 
A.M.  (2013).  The  use  of  porous  scaffold  as  a  tumor 
model. International Journal of Biomaterials, 396056. 
Zeinoun, M., …, Serrano Olmedo, J.J. (2021). Enhancing 
magnetic hyperthermia nanoparticle heating efficiency 
with  non-sinusoidal  alternating  magnetic  field 
waveforms. Nanomaterials, 11(12), 3240.