ACKNOWLEDGEMENTS
This research was performed with the support of the
following programmes and projects: Programa estatal
de generación de conocimiento y fortalecimiento
científico y tecnológico del sistema de I+D+i,
subprograma estatal de generación de conocimiento
del Ministerio de Ciencia e Innovación y Agencia
Estatal de Investigación, ref. PGC2018-097531-B-
I00 (Talenano: Estudio de la eficacia de tecnologías
alternativas de liberación de energía térmica y
mecánica mediante nanoestructuras de óxido de
hierro y de oro con aplicación en terapias), as regards
the modelling of cancer hyperthermia; European
Union’s Horizon 2020 Research and Innovation
Programme under grant agreement n. 953134
(INKplant project: Ink-based hybrid multi-material
fabrication of next generation implants), as regards
the modelling of cell-scaffold interactions; and
Programa de estancias de movilidad de profesores e
investigadores en centros extranjeros de enseñanza
superior e investigación del Ministerio de
Universidades, ref. PRX21/00460 (Ingeniería de
tejidos in silico facilitada mediante microscopía de
resonancia magnética), as regards validation strategy.
REFERENCES
Aske, K.C., Waugh, C.A. (2017). Expanding the 3R
principles: More rigour and transparency in research
using animals. EMBO Reports, 18(9), 1490-1492.
Ballesteros Hernando, J., Ramos Gómez, M., Díaz Lantada,
A. (2019). Modeling Living Cells Within Microfluidic
Systems Using Cellular Automata Models. Scientific
Reports, 9, 14886.
Casanova-Carvajal, O., …, Serrano-Olmedo, J.J. (2021).
The use of silica microparticles to improve the
efficiency of optical hyperthermia (OH). Int. J. Mol.
Sci., 22, 5091.
Edelman, L.B., Eddy, J.A., Price, N.D. (2010). In silico
models of cancer. Wiley Interdiscip. Rev. Syst. Biol.
Med., 2(4), 438-459.
Erkizia, G., Rainer, A., De Juan-Pardo, E. M. & Aldazabal,
J. (2010). Computer simulation of scaffold degradation.
Journal of Physics: Conference Series, Surface
Modifications and Functionalisation of Materials for
Biomedical Applications, 252, 012004.
Fais, S., Overholtzer, M. (2018). Cell-in-cell phenomena,
cannibalism, and autophagy: is there a relationship?
Cell Death Dis., 9, 95.
Führer, E., et al. (2017). 3D carbon scaffolds for neural stem
cell culture and magnetic resonance imaging. Adv.
Health. Mat., 7(4), 1700915.
Gardner, M. (1970). Mathematical games: The fantastic
combinations of John Conway’s new solitaire game
“life”. Scientific American, 223, 120–123.
Garijo, N., Manzano, R., Osta, R., Perez, M. (2012).
Stochastic cellular automata model of cell migration,
proliferation and differentiation: Validation with in
vitro cultures of muscle satellite cells. Theoretical
Biology, 314, 1–9.
Geris, L. (2013). Computational modelling in tissue
engineering, Springer-Verlag Berlin Heidelberg.
Geris, L., Guyot, Y., Schrooten, J., Papantoniou, I. (2016).
In silico regenerative medicine: how computational
tools allow regulatory and financial challenges to be
addressed in a volatile market. Interface Focus, 6,
20150105.
Geris, L., Lambrechts, T., Carlier, A., Papantoniou, I.
(2018). The future is digital: In silico tissue
engineering. Current Opinion in Biomedical
Engineering, 6, 92-98.
Jean-Quartier, C., Jeanquartier, F., Jurisica, I., Holzinger,
A. (2018). In silico cancer research towards 3R. BMC
cancer, 18(1), 408.
Khademhosseini, A., Langer, R. (2016). A decade of
progress in tissue engineering. Nat. Protoc., 11, 1775–
1781.
Keshavarzian, M., Meyer, C.A., Hayenga, H.N. (2019). In
Silico Tissue Engineering: A Coupled Agent-Based
Finite Element Approach. Tissue Eng Part C Methods,
25(11), 641-654.
Ludvigsen, K., Nagaraja, S., Daly, A. (2022). When is
software a medical device? Understanding and
determining the “intention” and requirements for
software as a medical device in European Union law.
European Journal of Risk Regulation, 13(1), 78-93.
Spencer, T.J., Hidalgo-Bastida, L.A., Cartmell, S.H.,
Halliday, L., Care, C.M. (2013). In silico multi-scale
model of transport and dynamic seeding in a bone tissue
engineering perfusion bioreactor. Biotechnol. Bioeng.,
110, 1221-1230
Vivas, J., Garzón-Alvarado, D. & Cerrolaza, M. (2015).
Modelling cell adhesion and proliferation: A cellular
automata-based approach. Advanced Modelling and
Simulation in Engineering, Sciences 2, 32.
Von Neumann, J., Burks, A.W. (1966). Theory of self-
reproducing automata. Urbana, University of Illinois
Press.
Wolfram, S. (1984). Universality and complexity in cellular
automata. Physica, 10D, 1–35.
Yagawa, Y., Tanigawa, K., Kobayashi, Y., Yamamoto, M.
(2017). Cancer immunity and therapy using
hyperthermia with immunotherapy, radiotherapy,
chemotherapy, and surgery. J. Cancer Metastasis
Treat., 3, 218-230.
Zhang, M., Boughton, P., Rose, B., Soon Lee, C., Hong,
A.M. (2013). The use of porous scaffold as a tumor
model. International Journal of Biomaterials, 396056.
Zeinoun, M., …, Serrano Olmedo, J.J. (2021). Enhancing
magnetic hyperthermia nanoparticle heating efficiency
with non-sinusoidal alternating magnetic field
waveforms. Nanomaterials, 11(12), 3240.