Mining, KDD ’19, page 166–175, New York, NY,
USA. Association for Computing Machinery.
Gunel, B., Zhu, C., Zeng, M., and Huang, X. (2019). Mind
the facts: Knowledge-boosted coherent abstractive
text summarization. NeurIPS, Knowledge Representa-
tion & Reasoning Meets Machine Learning (KR2ML
workshop), abs/2006.15435.
Gupta, S. and Gupta, S. K. (2019). Abstractive summa-
rization: An overview of the state of the art. Expert
Systems with Applications, 121:49–65.
Hochreiter, S., Schmidhuber, J., and Elvezia, C. (1997).
Long short-term memory. Neural Computation,
9(8):1735–1780.
Huang, Y., Feng, X., Feng, X., and Qin, B. (2021). The
factual inconsistency problem in abstractive text sum-
marization: A survey. CoRR, abs/2104.14839.
Karouzos, C., Paraskevopoulos, G., and Potamianos, A.
(2021). UDALM: Unsupervised domain adaptation
through language modeling. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2579–2590, On-
line. Association for Computational Linguistics.
Kitaev, N., Kaiser, L., and Levskaya, A. (2020). Reformer:
The efficient transformer. CoRR, abs/2001.04451.
Klymenko, O., Braun, D., and Matthes, F. (2020). Auto-
matic text summarization: A state-of-the-art review.
ICEIS (1), pages 648–655.
Kotonya, N. and Toni, F. (2020). Explainable automated
fact-checking for public health claims. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Online. As-
sociation for Computational Linguistics.
Kryscinski, W., McCann, B., Xiong, C., and Socher, R.
(2020). Evaluating the factual consistency of abstrac-
tive text summarization. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 9332–9346, On-
line. Association for Computational Linguistics.
Kudo, T. and Richardson, J. (2018). Sentencepiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing. CoRR,
abs/1808.06226.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. (2019). BART: denoising sequence-to-sequence
pre-training for natural language generation, transla-
tion, and comprehension. CoRR, abs/1910.13461.
Lin, C.-Y. (2004). ROUGE: A package for automatic evalu-
ation of summaries. In Text Summarization Branches
Out, pages 74–81, Barcelona, Spain. Association for
Computational Linguistics.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach.
Maynez, J., Narayan, S., Bohnet, B., and McDonald, R.
(2020). On faithfulness and factuality in abstractive
summarization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1906–1919, Online. Association for
Computational Linguistics.
Moradi, M., Dashti, M., and Samwald, M. (2020). Summa-
rization of biomedical articles using domain-specific
word embeddings and graph ranking. Journal of
Biomedical Informatics, 107:103452.
Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: A method for automatic evaluation of ma-
chine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguis-
tics, ACL ’02, page 311–318, USA. Association for
Computational Linguistics.
Sachidananda, V., Kessler, J., and Lai, Y.-A. (2021). Effi-
cient domain adaptation of language models via adap-
tive tokenization. Proceedings of the Second Work-
shop on Simple and Efficient Natural Language Pro-
cessing, pages 155–165.
Sai, A. B., Mohankumar, A. K., and Khapra, M. M. (2022).
A survey of evaluation metrics used for nlg systems.
ACM Computing Surveys (CSUR), 55(2):1–39.
Song, K., Lebanoff, L., Guo, Q., Qiu, X., Xue, X., Li,
C., Yu, D., and Liu, F. (2020a). Joint parsing and
generation for abstractive summarization. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):8894–8901.
Song, X., Salcianu, A., Song, Y., Dopson, D., and Zhou, D.
(2020b). Linear-time wordpiece tokenization. CoRR,
abs/2012.15524.
Tay, Y., Dehghani, M., Bahri, D., and Metzler, D.
(2020). Efficient transformers: A survey. CoRR,
abs/2009.06732.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Proceedings of the
31st International Conference on Neural Information
Processing Systems, pages 6000–6010.
Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Al-
berti, C., Onta
˜
n
´
on, S., Pham, P., Ravula, A., Wang,
Q., Yang, L., and Ahmed, A. (2020). Big bird: Trans-
formers for longer sequences. CoRR, abs/2007.14062.
Zeng, X., Abumansour, A. S., and Zubiaga, A. (2021). Au-
tomated fact-checking: A survey. Language and Lin-
guistics Compass, 15(10):e12438.
Zhang, J., Zhao, Y., Saleh, M., and Liu, P. J. (2019). PE-
GASUS: pre-training with extracted gap-sentences for
abstractive summarization. CoRR, abs/1912.08777.
Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and
Artzi, Y. (2020). Bertscore: Evaluating text genera-
tion with BERT. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.
Zhong, J., Wang, Z., and Li, Q. (2022). Mtl-das: Auto-
matic text summarization for domain adaptation. In-
tell. Neuroscience, 2022.
Zhou, C., Neubig, G., Gu, J., Diab, M., Guzm
´
an, F., Zettle-
moyer, L., and Ghazvininejad, M. (2021). Detecting
hallucinated content in conditional neural sequence
generation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021.
Challenges in Domain-Specific Abstractive Summarization and How to Overcome Them
689