5 FUTURE STEPS
The presented model proves that it is possible to
model bioimpedance measurements using the finite
element method and lays the groundwork for future
biomedical device modeling. Our long-term goals
are, firstly, to continue with the cylindrical model, as
it is a simple way to correlate the increase in volume
due to swelling by fluid accumulation with the effect
on the measured bioimpedance, but on the other hand,
we also aim to move towards more realistic models,
where we are considering using cross-sectional im-
ages of the ankle section or even three-dimensional
tomographies of the leg, so that we can carry out stud-
ies thanks to which we can even indicate the best way
of placing the measuring device, taking into account
the proximity of the bones, the fat accumulation in a
certain area or other factors. However, our most im-
mediate objective is to validate the data obtained from
the simulation with experimental results, so that we
can be sure that the model adjusts to the behavior of
the device on healthy individuals and, subsequently,
on diseased patients.
ACKNOWLEDGEMENTS
This work was supported by the Spanish-funded
project: “PRototipado y Ensayo CLÍnico del nuevo
dispositivo portátil HFvolum para la monitorización
en tiempo real de volúmenes en pacientes con in-
suficiencia cardiaca (PRECLI-HF)”, AT 21_00010,
funded by Junta de Andalucía – Consejería de Trans-
formación Económica, Industria, Conocimiento y
Universidades.
REFERENCES
Arrigo, M., Jessup, M., Mullens, W., Reza, N., Shah, A. M.,
Sliwa, K., and Mebazaa, A. (2020). Acute heart fail-
ure. Nature Reviews Disease Primers, 6(1):1–15.
Brodovicz, K. G., McNaughton, K., Uemura, N.,
Meininger, G., Girman, C. J., and Yale, S. H. (2009).
Reliability and feasibility of methods to quantitatively
assess peripheral edema. Clinical medicine & re-
search, 7(1-2):21–31.
Delfin Technologies (2022). https://delfintech.com/ mois-
turemeterd.
Du, W., Zhang, J., and Hu, J. (2018). A method to deter-
mine cortical bone thickness of human femur and tibia
using clinical ct scans. In 2018 IRCOBI conference
proceedings, Athens (Greece), pages 403–412.
Gabriel, S., Lau, R., and Gabriel, C. (1996). The dielectric
properties of biological tissues: Iii. parametric mod-
els for the dielectric spectrum of tissues. Physics in
medicine & biology, 41(11):2271.
Groenewegen, A., Rutten, F. H., Mosterd, A., and Hoes,
A. W. (2020). Epidemiology of heart failure. Euro-
pean journal of heart failure, 22(8):1342–1356.
Gupta, D. K., Skali, H., Claggett, B., Kasabov, R., Cheng,
S., Shah, A. M., Loehr, L. R., Heiss, G., Nambi, V.,
Aguilar, D., et al. (2014). Heart failure risk across
the spectrum of ankle-brachial index: the aric study
(atherosclerosis risk in communities). JACC: Heart
Failure, 2(5):447–454.
impedimed (2022). https://www.impedimed.com/ sfb7.
Khalil, S. F., Mohktar, M. S., and Ibrahim, F. (2014). The
theory and fundamentals of bioimpedance analysis in
clinical status monitoring and diagnosis of diseases.
Sensors, 14(6):10895–10928.
Kocbach, J., Folgerø, K., Mohn, L., and Brix, O. (2011).
A simulation approach to optimizing performance of
equipment for thermostimulation of muscle tissue us-
ing comsol multiphysics. Biophysics and Bioengi-
neering Letters, 4(2):9–33.
MatWeb (2022). http://www.matweb.com/ AISI type 304
stainless steel.
Puertas, M., Giménez, L., Pérez, A., Scagliusi, S. F., Pérez,
P., Olmo, A., Huertas, G., Medrano, J., and Yúfera,
A. (2021). Modeling edema evolution with electrical
bioimpedance: Application to heart failure patients.
In 2021 XXXVI Conference on Design of Circuits and
Integrated Systems (DCIS), pages 1–6. IEEE.
Ró
˙
zd
˙
zy
´
nska-
´
Swi ˛atkowska, A., Jurkiewicz, E., and Tylki-
Szyma
´
nska, A. (2015). Bioimpedance analysis as a
method to evaluate the proportion of fatty and muscle
tissues in progressive myopathy in pompe disease. In
JIMD Reports, Volume 26, pages 45–51. Springer.
BIODEVICES 2023 - 16th International Conference on Biomedical Electronics and Devices
168