Bose, R. P. J. C., & Van Der Aalst, W. M. P. (2009).
Context aware trace clustering: Towards improving
process mining results. Society for Industrial and
Applied Mathematics - 9th SIAM International
Conference on Data Mining 2009, Proceedings in
Applied Mathematics, 1, 397–408. https://doi.org/
10.1137/1.9781611972795.35
Diba, K., Batoulis, K., Weidlich, M., & Weske, M. (2020).
Extraction, correlation, and abstraction of event data for
process mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 10(3), 1–24.
https://doi.org/10.1002/widm.1346
Elkoumy, G., Fahrenkrog-Petersen, S. A., Sani, M. F.,
Koschmider, A., Mannhardt, F., Von Voigt, S. N.,
Rafiei, M., & Waldthausen, L. Von. (2022). Privacy
and Confidentiality in Process Mining: Threats and
Research Challenges. ACM Transactions on
Management Information Systems, 13(1), 1–17.
https://doi.org/10.1145/3468877
Fahrenkrog-Petersen, S. A. (2019). Providing privacy
guarantees in process mining. CEUR Workshop
Proceedings, 2370, 23–30.
Gartner. (2020). Market Guide for Process Mining.
Gartner, September, 1–33. https://www.gartner.
com/doc/reprints?id=1-SBXXPQO&ct=190625&st=sb
GDPR. (2022). GDPR. General Data Protection
Regulation. https://gdpr.eu/
Grisold, T., Mendling, J., Otto, M., & vom Brocke, J.
(2021). Adoption, use and management of process
mining in practice. Business Process Management
Journal, 27(2), 369–387. https://doi.org/10.1108/BPMJ
-03-2020-0112
Hill, M., & Swinhoe, D. (2021). The 15 biggest data
breaches of the 21st century. https://www.cso
online.com/article/2130877/the-biggest-data-breaches-
of-the-21st-century.html
Johnson, V. L., Woolridge, R. W., Wang, W., & Bell, J. R.
(2020). The Impact of Perceived Privacy, Accuracy and
Security on the Adoption of Mobile Self-Checkout
Systems. Journal of Innovation Economics &
Management, n°31(1), 221. https://doi.org/10.391 7/jie.
pr1.0065
Könings, B., Schaub, F., & Weber, M. (2016). Könings, B.,
Schaub, F., & Weber, M. (2016). Privacy and trust in
ambient intelligent environments. Next Generation
Intelligent Environments (Pp. 133-164). Springer, Cham.
Maneschijn, D. G., Bemthuis, R. H., Bukhsh, F. A., & Iacob,
M. E. (2022). A Methodology for Aligning Process
Model Abstraction Levels and Stakeholder Needs. In
ICEIS (1) (pp. 137-147).
Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich,
M., & Michael, J. (2019). Privacy-Preserving Process
Mining: Differential Privacy for Event Logs. Business
and Information Systems Engineering, 61(5), 595–614.
https://doi.org/10.1007/s12599-019-00613-3
Mannhardt, F., Petersen, S. A., & Oliveira, M. F. (2018).
Privacy Challenges for Process Mining in Human-
Centered Industrial Environments. Proceedings - 2018
International Conference on Intelligent Environments,
IE 2018, 64–71. https://doi.org/10.1109/IE.2018.00017
Pika, A., Wynn, M. T., Budiono, S., Hofstede, A. H. M. T.,
van der Aalst, W. M. P., & Reijers, H. A. (2020).
Privacy-preserving process mining in healthcare.
International Journal of Environmental Research and
Public Health, 17(5), 1–12. https://doi.org/10.3390/ijer
ph17051612
Polyvyanyy, A., Smirnov, S., & Weske, M. (2015).
Business process model abstraction. Handbook on
Business Process Management 1: Introduction,
Methods, and Information Systems, 147–165. https://
doi.org/10.1007/978-3-642-45100-3_7
Rafiei, M., Schnitzler, A., & van der Aalst, W. M. P. (2021).
PC4PM: A tool for privacy/confidentiality preservation
in process mining. CEUR Workshop Proceedings, 2973,
106–110.
Rafiei, M., & van der Aalst, W. M. P. (2020). Privacy-
preserving data publishing in process mining. Lecture
Notes in Business Information Processing, 392 LNBIP,
122–138. https://doi.org/10.1007/978-3-030-58638-6_8
Rafiei, M., & van der Aalst, W. M. P. (2021). Group-based
privacy preservation techniques for process mining. Data
and Knowledge Engineering, 134(April), 101908.
https://doi.org/10.1016/j.datak.2021.101908
Rozinat, A. (2017). Privacy, security and ethics in process
mining. https://fluxicon.com/blog/2017/11/privacy-secu
rity-and-ethics-in-process-mining-part-2-responsible-ha
ndling-of-data/
Stratton, S. J. (2021). Population research: convenience
sampling strategies. Prehospital and disaster Medicine,
36(4), 373-374
Sohail, S. A., Bukhsh, F. A., & van Keulen, M. (2021).
Multilevel privacy assurance evaluation of healthcare
metadata. Applied Sciences (Switzerland), 11(22).
https://doi.org/10.3390/app112210686
van der Aalst, W. M. P. (2016). Process Mining Data
Science in Action. Springer.
van der Aalst, W. M. P., & Günther, C. W. (2007). Finding
Structure in Unstructured Processes: The Case for
Process Mining. Proceedings - 7th International
Conference on Application of Concurrency to System
Design, ACSD 2007, Acsd, 3–12. https://doi.org/10
.1109/ACSD.2007.50
van Dongen, B. (2020). BPI Challenge 2020.
4TU.ResearchData. Collection. https://doi.org/10.4
121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
van Eck, M., Lu, X., Leemans, S., & Van Der Aalst, W. M.
P. (2015). PM2: a process mining project methodology.
International Conference on Advanced Information
Systems Engineering, 297–313.
van Zelst, S. J., Mannhardt, F., de Leoni, M., &
Koschmider, A. (2021). Event abstraction in process
mining: literature review and taxonomy. Granular
Computing, 6
(3), 719–736. https://doi.org/10.1007/
s41066-020-00226-2
Westin, A. F. (1967). Special report: legal safeguards to
insure privacy in a computer society. Communications
of the ACM, 10(9), 533-537.