P. (2020). Explainable machine learning in deploy-
ment. Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nai gym. CoRR, abs/1606.01540.
Chen, J., Kasihmuddin, M. S. M., Gao, Y., Guo, Y., Asyraf
Mansor, M., Romli, N. A., Chen, W., and Zheng, C.
(2023). Pro2sat: Systematic probabilistic satisfiability
logic in discrete hopfield neural network. Advances in
Engineering Software, 175:103355.
d’Avila Garcez, A. S., Dutra, A. R. R., and Alonso, E.
(2018). Towards symbolic reinforcement learning
with common sense. CoRR, abs/1804.08597.
Denil, M., Agrawal, P., Kulkarni, T. D., Erez, T., Battaglia,
P., and de Freitas, N. (2016). Learning to perform
physics experiments via deep reinforcement learning.
Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and
Zhou, D. (2019). Neural logic machines. CoRR,
abs/1904.11694.
Driessens, K. (2010). Relational Reinforcement Learning,
pages 857–862. Springer US, Boston, MA.
Evans, R. and Grefenstette, E. (2017). Learning explanatory
rules from noisy data. CoRR, abs/1711.04574.
Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson,
S. (2016). Learning to communicate with deep multi-
agent reinforcement learning.
Garcez, A., Besold, T., De Raedt, L., F
¨
oldi
´
ak, P., Hitzler, P.,
Icard, T., K
¨
uhnberger, K.-U., Lamb, L., Miikkulainen,
R., and Silver, D. (2015). Neural-symbolic learning
and reasoning: Contributions and challenges.
Garnelo, M., Arulkumaran, K., and Shanahan, M.
(2016). Towards deep symbolic reinforcement learn-
ing. CoRR, abs/1609.05518.
Graves, A., Wayne, G., and Danihelka, I. (2014). Neural
turing machines.
Guo, Y., Kasihmuddin, M. S. M., Gao, Y., Mansor, M. A.,
Wahab, H. A., Zamri, N. E., and Chen, J. (2022).
Yran2sat: A novel flexible random satisfiability logi-
cal rule in discrete hopfield neural network. Advances
in Engineering Software, 171:103169.
Ho, J. and Ermon, S. (2016). Generative adversarial imita-
tion learning. In Lee, D. D., Sugiyama, M., Luxburg,
U. V., Guyon, I., and Garnett, R., editors, Advances
in Neural Information Processing Systems 29, pages
4565–4573. Curran Associates, Inc.
Hu, Z., Ma, X., Liu, Z., Hovy, E. H., and Xing, E. P.
(2016). Harnessing deep neural networks with logic
rules. CoRR, abs/1603.06318.
Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith,
S. (2018). Using reward machines for high-level
task specification and decomposition in reinforcement
learning. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2107–2116, Stock-
holmsm
¨
assan, Stockholm Sweden. PMLR.
Jiang, Z. and Luo, S. (2019). Neural logic reinforcement
learning.
Kowalski, R. A. (1974). Predicate logic as programming
language. In IFIP Congress, pages 569–574.
Lederman, G., Rabe, M. N., Lee, E. A., and Seshia, S. A.
(2018). Learning heuristics for quantified boolean for-
mulas through deep reinforcement learning.
Leike, J., Krueger, D., Everitt, T., Martic, M., Maini,
V., and Legg, S. (2018). Scalable agent alignment
via reward modeling: a research direction. CoRR,
abs/1811.07871.
Li, R., Jabri, A., Darrell, T., and Agrawal, P. (2019). To-
wards practical multi-object manipulation using rela-
tional reinforcement learning.
Martires, P. Z. D., Kumar, N., Persson, A., Loutfi, A., and
Raedt, L. D. (2020). Symbolic learning and reasoning
with noisy data for probabilistic anchoring.
Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L.,
and Kolobov, A. (2005). BLOG: Probabilistic models
with unknown objects. In Proc. IJCAI, pages 1352–
1359.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforce-
ment learning.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learn-
ing.
Muggleton, S. and de Raedt, L. (1994). Inductive logic pro-
gramming: Theory and methods. The Journal of Logic
Programming, 19-20:629 – 679. Special Issue: Ten
Years of Logic Programming.
Muggleton, S. and De Raedt, L. (1994). Inductive logic
programming: Theory and methods. The Journal of
Logic Programming, 19:629–679.
Narendra, T., Sankaran, A., Vijaykeerthy, D., and Mani, S.
(2018). Explaining deep learning models using causal
inference. CoRR, abs/1811.04376.
Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse
reinforcement learning. In Proceedings of the Seven-
teenth International Conference on Machine Learn-
ing, ICML ’00, page 663–670, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.
Pacheco, M. L., Dalal, I., and Goldwasser, D. (2018).
Leveraging representation and inference through deep
relational learning. NeurIPS Workshop on Relational
Representation Learning.
Payani, A. and Fekri, F. (2019). Inductive logic program-
ming via differentiable deep neural logic networks.
CoRR, abs/1906.03523.
Payani, A. and Fekri, F. (2020). Incorporating relational
background knowledge into reinforcement learning
via differentiable inductive logic programming.
Raedt, L. D., Kersting, K., Natarajan, S., and Poole, D.
(2016). Statistical relational artificial intelligence:
Logic, probability, and computation. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning,
10(2):1–189.
Roderick, M., Grimm, C., and Tellex, S. (2017). Deep ab-
stract q-networks.
Logic + Reinforcement Learning + Deep Learning: A Survey
721